{"title":"A Natural Axiomatization of Computability and Proof of Church's Thesis","authors":"N. Dershowitz, Y. Gurevich","doi":"10.2178/bsl/1231081370","DOIUrl":null,"url":null,"abstract":"Abstract Church's Thesis asserts that the only numeric functions that can be calculated by effective means are the recursive ones, which are the same, extensionally, as the Turing-computable numeric functions. The Abstract State Machine Theorem states that every classical algorithm is behaviorally equivalent to an abstract state machine. This theorem presupposes three natural postulates about algorithmic computation. Here, we show that augmenting those postulates with an additional requirement regarding basic operations gives a natural axiomatization of computability and a proof of Church's Thesis, as Gödel and others suggested may be possible. In a similar way, but with a different set of basic operations, one can prove Turing's Thesis, characterizing the effective string functions, and—in particular—the effectively-computable functions on string representations of numbers.","PeriodicalId":55307,"journal":{"name":"Bulletin of Symbolic Logic","volume":"14 1","pages":"299 - 350"},"PeriodicalIF":0.7000,"publicationDate":"2008-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2178/bsl/1231081370","citationCount":"113","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Symbolic Logic","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2178/bsl/1231081370","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 113
Abstract
Abstract Church's Thesis asserts that the only numeric functions that can be calculated by effective means are the recursive ones, which are the same, extensionally, as the Turing-computable numeric functions. The Abstract State Machine Theorem states that every classical algorithm is behaviorally equivalent to an abstract state machine. This theorem presupposes three natural postulates about algorithmic computation. Here, we show that augmenting those postulates with an additional requirement regarding basic operations gives a natural axiomatization of computability and a proof of Church's Thesis, as Gödel and others suggested may be possible. In a similar way, but with a different set of basic operations, one can prove Turing's Thesis, characterizing the effective string functions, and—in particular—the effectively-computable functions on string representations of numbers.
期刊介绍:
The Bulletin of Symbolic Logic was established in 1995 by the Association for Symbolic Logic to provide a journal of high standards that would be both accessible and of interest to as wide an audience as possible. It is designed to cover all areas within the purview of the ASL: mathematical logic and its applications, philosophical and non-classical logic and its applications, history and philosophy of logic, and philosophy and methodology of mathematics.