Critical Reviews in Solid State and Materials Sciences最新文献

筛选
英文 中文
Entropy stabilized multicomponent oxides with diverse functionality – a review 具有多种功能的熵稳定多组分氧化物综述
IF 10.8 2区 材料科学
Critical Reviews in Solid State and Materials Sciences Pub Date : 2021-02-26 DOI: 10.1080/10408436.2021.1886047
Ashritha Salian, Saumen Mandal
{"title":"Entropy stabilized multicomponent oxides with diverse functionality – a review","authors":"Ashritha Salian, Saumen Mandal","doi":"10.1080/10408436.2021.1886047","DOIUrl":"https://doi.org/10.1080/10408436.2021.1886047","url":null,"abstract":"Abstract Over the last few years, high-entropy oxides (HEOs) are subjected to considerable scientific scrutiny due to their exceptional characteristics, tunable properties displaying remarkable performance including colossal dielectric constant, low electrical and thermal conductivity, high-temperature phase stability, excellent magnetic, structural optical properties and extraordinary catalytic behavior. The single-phase crystal structure of multicomponent oxides is stabilized via configurational entropy (S config). An incrementation in the number of elements magnifies S config which dominates the free energy landscape, overcomes enthalpy in Gibb’s free energy, and reaches a maximum magnitude while entire elements are in equiatomic fractions. Therefore, accurate control of configurational entropy is the main motive force used to achieve phase pure HEOs by the incorporation of more than four cations in the system in equiatomic proportions with random distributions. HEOs are becoming hotcakes in the field of research as it emphasizes on compositions proximally near the centers of the multicomponent phase diagram, where unexpected behaviors can be anticipated. Thus, presenting a crucial research frontier for the material scientists to explore. As the novel design approach of entropy stabilization is still immature, these new oxide candidates can be engineered for practical applications in batteries, capacitors, nuclear reactors, and thermal barrier coatings. This review addresses the properties like electrochemical, electrical, magnetic, mechanical, catalytic, thermal, etc., of HEOs to date, with additionally focusing on their classification, theoretical predictions, and fundamental understanding of entropy engineering including entropy dominated phase stabilization effect.","PeriodicalId":55203,"journal":{"name":"Critical Reviews in Solid State and Materials Sciences","volume":"30 11 1","pages":"142 - 193"},"PeriodicalIF":10.8,"publicationDate":"2021-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82741773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 21
Microstructural, corrosion and mechanical properties of additively manufactured alloys: a review 增材制造合金的显微组织、腐蚀和力学性能综述
IF 10.8 2区 材料科学
Critical Reviews in Solid State and Materials Sciences Pub Date : 2021-02-24 DOI: 10.1080/10408436.2021.1886044
H. Hamza, K. M. Deen, A. Khaliq, E. Asselin, W. Haider
{"title":"Microstructural, corrosion and mechanical properties of additively manufactured alloys: a review","authors":"H. Hamza, K. M. Deen, A. Khaliq, E. Asselin, W. Haider","doi":"10.1080/10408436.2021.1886044","DOIUrl":"https://doi.org/10.1080/10408436.2021.1886044","url":null,"abstract":"Abstract Additive manufacturing (AM) of metallic alloys offers a new avenue to print objects having complex geometries. This exclusive benefit of AM has made it an alternative route to conventional manufacturing. Importantly, additively manufactured (AMed) alloys often exhibit improved microstructures, which may provide better properties. The microstructure of an alloy can be tuned by controlling the processing parameters. This study includes an overview of the processing parameters that can influence the microstructural, mechanical, and corrosion properties of AMed alloys. Moreover, the effects of heat treatment on AMed alloys are also discussed. Among various processing parameters, it is observed that the laser power significantly influences the microstructure. The microstructures produced with high laser power are similar to heat-treated samples for 316L stainless steel (SS) and Ti6Al4V. Similarly, variation in scanning speed results in distinct morphology of grains in Ti6Al4V. Moreover, different AM processes, such as SLM and EBM, produce coarse and fine β grains, respectively, in Ti6Al4V. The fabrication of AlSi10Mg yields various sizes of melt pool due to different scanning strategies. Furthermore, mechanical properties such as microhardness is higher and the yield strength is lower for Ti6Al4V fabricated at lower laser power. The corrosion behavior of SLMed Ti6Al4V is different on the perpendicular and parallel planes to the build direction. Due to the increase in grain size after heat treatment, the corrosion resistance of AMed Ti6Al4V and AlSi10Mg is reduced. In contrast, heat treatment applied on 316L, Ti6Al4V, AlSi10Mg, and Inconel 718 is beneficial for mechanical properties. After the development of materials with optimized processing parameters, the research should be conducted on replacement of the wrought alloys with the AMed alloys. It is expected that new applications such as fuel cells and biomedical devices will utilize the AM technology to build parts in the recent future.","PeriodicalId":55203,"journal":{"name":"Critical Reviews in Solid State and Materials Sciences","volume":"58 1","pages":"46 - 98"},"PeriodicalIF":10.8,"publicationDate":"2021-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74364722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Cold-isostatic pressing of metal powders: a review of the technology and recent developments 金属粉末的冷等静压技术及其最新进展
IF 10.8 2区 材料科学
Critical Reviews in Solid State and Materials Sciences Pub Date : 2021-02-23 DOI: 10.1080/10408436.2021.1886043
U. M. Attia
{"title":"Cold-isostatic pressing of metal powders: a review of the technology and recent developments","authors":"U. M. Attia","doi":"10.1080/10408436.2021.1886043","DOIUrl":"https://doi.org/10.1080/10408436.2021.1886043","url":null,"abstract":"Abstract Cold-isostatic pressing (CIP) is a powder-based, near-net-shape technology for the production of metal and ceramic components. CIP has been commonly used for processing ceramics, but not as widely used for metals. Recent developments in process capability and powder metallurgy, however, have allowed CIP to be increasingly used in the manufacture of high-performance metal parts. Advantages such as solid-state processing, uniform microstructure, shape complexity, low tooling cost and process scalability have made CIP a viable processing route for metals. In addition, the potential to produce near-net-shape parts with minimal material waste has made the process more widely acceptable in niche applications, such as aerospace and automotive. This review assesses the state of the technology in terms of capabilities and limitations, materials, tool design and fabrication, process modeling, post processing and assessment. The review also highlights challenges and research gaps in using CIP for producing metal parts, with a focus on potential areas of improvement and recent developments that address these challenges.","PeriodicalId":55203,"journal":{"name":"Critical Reviews in Solid State and Materials Sciences","volume":"76 1","pages":"587 - 610"},"PeriodicalIF":10.8,"publicationDate":"2021-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76117092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
Synthesis and applications of ZnO nanostructures (ZONSs): a review ZnO纳米结构的合成与应用综述
IF 10.8 2区 材料科学
Critical Reviews in Solid State and Materials Sciences Pub Date : 2021-02-23 DOI: 10.1080/10408436.2021.1886041
M. Noman, N. Amor, Michal Petrů
{"title":"Synthesis and applications of ZnO nanostructures (ZONSs): a review","authors":"M. Noman, N. Amor, Michal Petrů","doi":"10.1080/10408436.2021.1886041","DOIUrl":"https://doi.org/10.1080/10408436.2021.1886041","url":null,"abstract":"Abstract Zinc oxide (ZnO) based nanostructures have gained remarkable attention worldwide for their photocatalytic activation behavior as a semi-conductor metal oxide photocatalyst in different industries, i.e. paints, cosmetic, rubber and composites coating. The main motivation of this thematic review is to analyze the mechanism of photocatalytic activity of ZnO nanostructures (ZONSs) in detail, and their application in photovoltaic, biomedical and sensing fields based on photocatalytic performance and other crucial properties that enable nano ZnO as a potential and competitive candidate in commercial markets. ZONSs were characterized with a wide range of analytical tools including X-ray diffraction (XRD), electron microscopies (SEM, FESEM, TEM), dynamic light scattering (DLS) and UV–VIS spectroscopy etc. These characterization tools provide us typical information about the crystal structure, level of crystallinity, shape, size, dimension and the change in physical, optical and chemical properties of ZONSs. Synthesis routes, process variables and their combined effect on the performance characterization of ZONSs have also been discussed in detail. The aim of this review is to provide an up-to-date knowledge to the readers about the applications of nano ZnO in diverse industries either in catalytic or in sensing form.","PeriodicalId":55203,"journal":{"name":"Critical Reviews in Solid State and Materials Sciences","volume":"42 1","pages":"99 - 141"},"PeriodicalIF":10.8,"publicationDate":"2021-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90515621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 75
Layered materials and their heterojunctions for supercapacitor applications: a review 层状材料及其异质结在超级电容器中的应用综述
IF 10.8 2区 材料科学
Critical Reviews in Solid State and Materials Sciences Pub Date : 2021-02-18 DOI: 10.1080/10408436.2021.1886048
T. Kar, S. Godavarthi, S. K. Pasha, Kalim Deshmukh, L. Martinez-Gomez, M. K. Kesarla
{"title":"Layered materials and their heterojunctions for supercapacitor applications: a review","authors":"T. Kar, S. Godavarthi, S. K. Pasha, Kalim Deshmukh, L. Martinez-Gomez, M. K. Kesarla","doi":"10.1080/10408436.2021.1886048","DOIUrl":"https://doi.org/10.1080/10408436.2021.1886048","url":null,"abstract":"Abstract Supercapacitors have recently emerged as a potential technology with superior charge storage capacity and power density. Layered materials, by the virtue of their morphology and high surface area, are deemed to be potential candidates for storing charge or energy. In this review, the supercapacitive properties and electrochemical stability of different layered materials (MnO2, graphene, g-C3N4, MoS2, and MXenes) in a wide range of electrolytes is discussed. Moreover, an overview of the heterojunctions or composites of these 2D materials is included, emphasizing their synergistic effect towards improved supercapacitive performance and cyclic stability. Most importantly, the capacitive behavior dependence on the working electrode morphology, crystal structure, and type of electrolyte is explained. A future perspective on the design and use of these layered materials and their heterojunctions for commercial applications is presented.","PeriodicalId":55203,"journal":{"name":"Critical Reviews in Solid State and Materials Sciences","volume":"146 1","pages":"357 - 388"},"PeriodicalIF":10.8,"publicationDate":"2021-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88635493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
Recent developments in materials design for all-solid-state Li–S batteries 全固态锂电池材料设计的最新进展
IF 10.8 2区 材料科学
Critical Reviews in Solid State and Materials Sciences Pub Date : 2021-02-14 DOI: 10.1080/10408436.2021.1886045
N. Phuc, K. Hikima, H. Muto, A. Matsuda
{"title":"Recent developments in materials design for all-solid-state Li–S batteries","authors":"N. Phuc, K. Hikima, H. Muto, A. Matsuda","doi":"10.1080/10408436.2021.1886045","DOIUrl":"https://doi.org/10.1080/10408436.2021.1886045","url":null,"abstract":"Abstract All-solid-state Li–S batteries offer certain advantages compared with Li–S batteries that employ an organic liquid electrolyte owing to termination of the shuttle effect. This article reviews research and development on all-solid-state Li–S batteries from their conception to the present day. First, we carefully reflect on batteries that use sulfur powder, metal sulfide, and lithium sulfur as positive active materials. Then, the use of graphite, silicon, and lithium metal in all-solid-state batteries is discussed. The invention of batteries containing only one material as both the active material and ionic conductor is especially highlighted because of the advantages of all-solid-state batteries using sulfidic materials compared with other types of batteries.","PeriodicalId":55203,"journal":{"name":"Critical Reviews in Solid State and Materials Sciences","volume":"69 1","pages":"283 - 308"},"PeriodicalIF":10.8,"publicationDate":"2021-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80831376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Techniques to characterize ternary and quaternary ferromagnetic shape memory alloys 表征三元和四元铁磁形状记忆合金的技术
IF 10.8 2区 材料科学
Critical Reviews in Solid State and Materials Sciences Pub Date : 2020-12-24 DOI: 10.1080/10408436.2020.1860902
Riaz Ahamed, R. Ghomashchi, Zonghan Xie, Lei Chen
{"title":"Techniques to characterize ternary and quaternary ferromagnetic shape memory alloys","authors":"Riaz Ahamed, R. Ghomashchi, Zonghan Xie, Lei Chen","doi":"10.1080/10408436.2020.1860902","DOIUrl":"https://doi.org/10.1080/10408436.2020.1860902","url":null,"abstract":"Abstract Ni-Mn-X (X = group IIIA-VA elements) Heusler alloys have been seen to exhibit multiferroic effects such as magnetic/metamagnetic shape memory (MSM/MMSM), magnetocaloric (MC), direct energy conversion etc. and have a large potential for diverse applications in actuation, magnetic refrigeration and conversion of low grade waste heat into electricity. Beneath the multifunctional potential of these alloys is a magnetostructural coupling encompassing structural and magnetic transformations, which in turn depends on alloy compositions. As compositions are varied different crystal structures are evolved and it becomes essential that the structures are accurately characterized for their microstructures. This paper provides a short review of characterization techniques such as X-ray diffraction (XRD), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC) with examples from our work as well as literature. Emphasis is laid on XRD, TEM and DSC, which are very important for microstructural characterization.","PeriodicalId":55203,"journal":{"name":"Critical Reviews in Solid State and Materials Sciences","volume":"74 1","pages":"532 - 552"},"PeriodicalIF":10.8,"publicationDate":"2020-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86069447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long range ordered, dimerized, large-D and Haldane phases in spin 1 chain compounds 自旋1链化合物中的长范围有序相、二聚相、大d相和霍尔丹相
IF 10.8 2区 材料科学
Critical Reviews in Solid State and Materials Sciences Pub Date : 2020-12-14 DOI: 10.1080/10408436.2020.1852911
O. Maximova, S. Streltsov, A. Vasiliev
{"title":"Long range ordered, dimerized, large-D and Haldane phases in spin 1 chain compounds","authors":"O. Maximova, S. Streltsov, A. Vasiliev","doi":"10.1080/10408436.2020.1852911","DOIUrl":"https://doi.org/10.1080/10408436.2020.1852911","url":null,"abstract":"Abstract In 1983, F. Duncan M. Haldane predicted a singlet ground state for isolated integer-spin one-dimensional antiferromagnets with low single-ion anisotropy D. Since then, a lot of species containing chains of integer spin ions were tested to check the basic conjecture on an energy gap separating the continuum of the excited states from the ground state. As a result of these studies, it has been established that there are numerous states competing with the Haldane phase, namely long-range ordered, dimerized, and large-D phases. The long-range magnetic order takes place due to sufficiently strong exchange interactions between adjacent chains. Dimerization results from the alternation of the exchange interactions within the chains. Both uniaxial and rhombic single-ion anisotropies can suppress the Haldane phase, which is robust only until some critical values. The choice between the competing phases depends also on exchange anisotropy. Excellent reviews on the basic results obtained during the first 20 years of investigation of these phenomena provided solid background for the future studies. Here, we present some developments in this field obtained over the next two decades of research on spin-1 chain systems.","PeriodicalId":55203,"journal":{"name":"Critical Reviews in Solid State and Materials Sciences","volume":"23 1","pages":"371 - 383"},"PeriodicalIF":10.8,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77378219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Capsule-based healing systems in composite materials: a review 复合材料中基于胶囊的愈合系统:综述
IF 10.8 2区 材料科学
Critical Reviews in Solid State and Materials Sciences Pub Date : 2020-12-11 DOI: 10.1080/10408436.2020.1852912
S. Ilyaei, R. Sourki, Y. H. A. Akbari
{"title":"Capsule-based healing systems in composite materials: a review","authors":"S. Ilyaei, R. Sourki, Y. H. A. Akbari","doi":"10.1080/10408436.2020.1852912","DOIUrl":"https://doi.org/10.1080/10408436.2020.1852912","url":null,"abstract":"Abstract Composites are used in a variety of applications due to their excellent properties. However, structural polymers are sensitive and susceptible to thermal and mechanical damage in form of micro-cracks, which are onset to grow deep within the structure where detection and repair are practically impossible. To overcome these problems, broad range of self-healing structures have emerged. This technology has led to an increase in the material’s lifetime and safety while reducing the repair and replacement costs. Capsule-based healing systems are a well-known technology that has many uses in smart protective coatings, dental composites, concrete components, and generally for polymer and fiber-reinforced composites. This article summarizes the research work on the capsule-based self-healing system over the last two decades. In this regard, after a brief introduction, various types of microencapsulation-based methods used in healing systems are classified. After explaining the manufacturing process of capsules, parameters affecting the microencapsulation quality particularly, agitation rate, core to shell weight ratio, monomer viscosity, solvent property, reaction time, temperature, pH, and U/F ratio are explained in detail. Finally, the most common healing efficiency evaluation methods are described. This review provides the reader with an overview of achievements to date, and insight into future development for industrial and engineering applications. Graphical Abstract Abbreviations 2MZ-Azine 2,4-diamino-6[-2-methyl-imidazolyl(1)]-ethyl-cis-triazine 2PhI 2-phenyl Imidazole BGE N-butyl Glycidyl Ether CAI Compression After Impact CB Carbon Black CC Compliance Calibration CNS Calcium hydroxide (Ca(OH) ) Nano-spherulites CNTs Carbon Nanotubes DCB Double Cantilever Beam DCM Dichloromethane DCPD Dicyclopentadiene DGEBA Diglycidyl Ether of Bisphenol A DTHP Diglycidyl Tetrahydro-o-Phthalate EDA Ethylenediamine ENB Ethylidene Norbornene EPA Ethyl Phenyl Acetate FCG Fatigue Crack Growing FRP Fiber-Reinforced Polymer GHS Globally Harmonized System of the Classification and Labeling of Chemicals GO Graphene Oxide HGFs Hollow Glass Fibers IPDI Isophorone Diisocyanate MBT Modified Beam Theory MCC Modified Compliance Calibration MF Melamine-Formaldehyde MWCNT Multi-Walled Carbon Nanotube NaCMC Carboxymethyl Cellulose O/W Oil-in-Water PA Phenyl Acetate PAA Phthalic Anhydride PAANa Sodium Polyacrylate PCL Polycaprolactone PCP Polycyclopentadiene PDA Polydopamine PDMS Poly (Dimethyl-Siloxane) PEA Polyetheramine PhCl Chlorobenzene PMCs Polymer Matrix Composites PMMA Poly (Methyl-Methacrylate) PMUF Poly (Melamine-Urea-Formaldehyde) PU Polyurethane PVA Polyvinyl Alcohol ROMP Ring-Opening Metathesis Polymerization SEM Scanning Electron Microscope SENB Single-Edge Notched Bending SIFs Stress Intensity Factors SWCNT Single-Wall Carbon Nanotube TDCB Trapped Double Cantilever Beam TGA Thermogravimetric Analysis UF Urea-Formaldehyde UFM UF Microcapsules W/O Water-in-Oi","PeriodicalId":55203,"journal":{"name":"Critical Reviews in Solid State and Materials Sciences","volume":"63 1","pages":"491 - 531"},"PeriodicalIF":10.8,"publicationDate":"2020-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83944406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Tunable fluorescent carbon dots: synthesis progress, fluorescence origin, selective and sensitive volatile organic compounds detection 可调谐荧光碳点:合成进展、荧光来源、选择性和敏感性挥发性有机物检测
IF 10.8 2区 材料科学
Critical Reviews in Solid State and Materials Sciences Pub Date : 2020-11-02 DOI: 10.1080/10408436.2020.1830750
Susmita Dolai, S. Bhunia, Sathish Rajendran, Varsha UshaVipinachandran, S. Ray, P. Kluson
{"title":"Tunable fluorescent carbon dots: synthesis progress, fluorescence origin, selective and sensitive volatile organic compounds detection","authors":"Susmita Dolai, S. Bhunia, Sathish Rajendran, Varsha UshaVipinachandran, S. Ray, P. Kluson","doi":"10.1080/10408436.2020.1830750","DOIUrl":"https://doi.org/10.1080/10408436.2020.1830750","url":null,"abstract":"Abstract Carbon dots (C-dots) are emergent nanomaterials of carbon-based materials family and have gained significant research interest because of their environmental friendliness, brightness, tunable fluorescence, chemical inertness, low cost, simple synthetic route and availability for wide variety of starting materials. These are considered as potential competitor to conventional semiconductor quantum dots in terms of lower toxicity. It is found that their involvement in adverse fields of chemical and bio-sensing, bio-imaging, drug delivery, photocatalysis, electrocatalysis and light-emitting devices makes as an ideal and potential candidate. Interestingly they are treated as important and versatile platform for engineering multifunctional nanosensors. This review focuses on the remarkable research progress of high quality tunable fluorescent C-dots synthesis via familiar top-down and bottom-up approaches. Their fluorescence origin has been nicely demonstrated by quantum confinement effect, surface state and molecular fluorescence properties. Finally, selective and sensitive atmospheric prevailed volatile organic compounds recognition has been explained with C-dots in both solution and solid phase along with discussion on challenging and future research direction.","PeriodicalId":55203,"journal":{"name":"Critical Reviews in Solid State and Materials Sciences","volume":"44 1","pages":"349 - 370"},"PeriodicalIF":10.8,"publicationDate":"2020-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90914035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 18
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信