层状材料及其异质结在超级电容器中的应用综述

IF 8.1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
T. Kar, S. Godavarthi, S. K. Pasha, Kalim Deshmukh, L. Martinez-Gomez, M. K. Kesarla
{"title":"层状材料及其异质结在超级电容器中的应用综述","authors":"T. Kar, S. Godavarthi, S. K. Pasha, Kalim Deshmukh, L. Martinez-Gomez, M. K. Kesarla","doi":"10.1080/10408436.2021.1886048","DOIUrl":null,"url":null,"abstract":"Abstract Supercapacitors have recently emerged as a potential technology with superior charge storage capacity and power density. Layered materials, by the virtue of their morphology and high surface area, are deemed to be potential candidates for storing charge or energy. In this review, the supercapacitive properties and electrochemical stability of different layered materials (MnO2, graphene, g-C3N4, MoS2, and MXenes) in a wide range of electrolytes is discussed. Moreover, an overview of the heterojunctions or composites of these 2D materials is included, emphasizing their synergistic effect towards improved supercapacitive performance and cyclic stability. Most importantly, the capacitive behavior dependence on the working electrode morphology, crystal structure, and type of electrolyte is explained. A future perspective on the design and use of these layered materials and their heterojunctions for commercial applications is presented.","PeriodicalId":55203,"journal":{"name":"Critical Reviews in Solid State and Materials Sciences","volume":"146 1","pages":"357 - 388"},"PeriodicalIF":8.1000,"publicationDate":"2021-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Layered materials and their heterojunctions for supercapacitor applications: a review\",\"authors\":\"T. Kar, S. Godavarthi, S. K. Pasha, Kalim Deshmukh, L. Martinez-Gomez, M. K. Kesarla\",\"doi\":\"10.1080/10408436.2021.1886048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Supercapacitors have recently emerged as a potential technology with superior charge storage capacity and power density. Layered materials, by the virtue of their morphology and high surface area, are deemed to be potential candidates for storing charge or energy. In this review, the supercapacitive properties and electrochemical stability of different layered materials (MnO2, graphene, g-C3N4, MoS2, and MXenes) in a wide range of electrolytes is discussed. Moreover, an overview of the heterojunctions or composites of these 2D materials is included, emphasizing their synergistic effect towards improved supercapacitive performance and cyclic stability. Most importantly, the capacitive behavior dependence on the working electrode morphology, crystal structure, and type of electrolyte is explained. A future perspective on the design and use of these layered materials and their heterojunctions for commercial applications is presented.\",\"PeriodicalId\":55203,\"journal\":{\"name\":\"Critical Reviews in Solid State and Materials Sciences\",\"volume\":\"146 1\",\"pages\":\"357 - 388\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2021-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Solid State and Materials Sciences\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/10408436.2021.1886048\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Solid State and Materials Sciences","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/10408436.2021.1886048","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 14

摘要

摘要超级电容器作为一种具有优异的电荷存储能力和功率密度的潜在技术,近年来已崭露头角。层状材料由于其形态和高表面积,被认为是储存电荷或能量的潜在候选材料。本文讨论了不同层状材料(MnO2、石墨烯、g-C3N4、MoS2和MXenes)在多种电解质中的超电容性能和电化学稳定性。此外,概述了这些二维材料的异质结或复合材料,强调了它们对提高超电容性能和循环稳定性的协同作用。最重要的是,电容行为依赖于工作电极的形态,晶体结构和电解质的类型被解释。对这些层状材料及其异质结的设计和应用前景进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Layered materials and their heterojunctions for supercapacitor applications: a review
Abstract Supercapacitors have recently emerged as a potential technology with superior charge storage capacity and power density. Layered materials, by the virtue of their morphology and high surface area, are deemed to be potential candidates for storing charge or energy. In this review, the supercapacitive properties and electrochemical stability of different layered materials (MnO2, graphene, g-C3N4, MoS2, and MXenes) in a wide range of electrolytes is discussed. Moreover, an overview of the heterojunctions or composites of these 2D materials is included, emphasizing their synergistic effect towards improved supercapacitive performance and cyclic stability. Most importantly, the capacitive behavior dependence on the working electrode morphology, crystal structure, and type of electrolyte is explained. A future perspective on the design and use of these layered materials and their heterojunctions for commercial applications is presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
22.10
自引率
2.80%
发文量
0
审稿时长
3 months
期刊介绍: Critical Reviews in Solid State and Materials Sciences covers a wide range of topics including solid state materials properties, processing, and applications. The journal provides insights into the latest developments and understandings in these areas, with an emphasis on new and emerging theoretical and experimental topics. It encompasses disciplines such as condensed matter physics, physical chemistry, materials science, and electrical, chemical, and mechanical engineering. Additionally, cross-disciplinary engineering and science specialties are included in the scope of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信