{"title":"Representations of the Symmetric Group are Decomposable in Polynomial Time","authors":"Sheehan Olver","doi":"10.1007/s10208-025-09697-8","DOIUrl":"https://doi.org/10.1007/s10208-025-09697-8","url":null,"abstract":"<p>We introduce an algorithm to decompose matrix representations of the symmetric group over the reals into irreducible representations, which as a by-product also computes the multiplicities of the irreducible representations. The algorithm applied to a <i>d</i>-dimensional representation of <span>(S_n)</span> is shown to have a complexity of <span>({mathcal {O}}(n^2 d^3))</span> operations for determining which irreducible representations are present and their corresponding multiplicities and a further <span>({mathcal {O}}(n d^4))</span> operations to fully decompose representations with non-trivial multiplicities. These complexity bounds are pessimistic and in a practical implementation using floating point arithmetic and exploiting sparsity we observe better complexity. We demonstrate this algorithm on the problem of computing multiplicities of two tensor products of irreducible representations (the Kronecker coefficients problem) as well as higher order tensor products. For hook and hook-like irreducible representations the algorithm has polynomial complexity as <i>n</i> increases. We also demonstrate an application to constructing a basis of homogeneous polynomials so that applying a permutation of variables induces an irreducible representation.</p>","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"62 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143385014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amir Ali Ahmadi, Abraar Chaudhry, Vikas Sindhwani, Stephen Tu
{"title":"Safely Learning Dynamical Systems","authors":"Amir Ali Ahmadi, Abraar Chaudhry, Vikas Sindhwani, Stephen Tu","doi":"10.1007/s10208-025-09689-8","DOIUrl":"https://doi.org/10.1007/s10208-025-09689-8","url":null,"abstract":"<p>A fundamental challenge in learning an unknown dynamical system is to reduce model uncertainty by making measurements while maintaining safety. In this work, we formulate a mathematical definition of what it means to safely learn a dynamical system by sequentially deciding where to initialize the next trajectory. In our framework, the state of the system is required to stay within a safety region for a horizon of <i>T</i> time steps under the action of all dynamical systems that (i) belong to a given initial uncertainty set, and (ii) are consistent with the information gathered so far. For our first set of results, we consider the setting of safely learning a linear dynamical system involving <i>n</i> states. For the case <span>(T=1)</span>, we present a linear programming-based algorithm that either safely recovers the true dynamics from at most <i>n</i> trajectories, or certifies that safe learning is impossible. For <span>(T=2)</span>, we give a semidefinite representation of the set of safe initial conditions and show that <span>(lceil n/2 rceil )</span> trajectories generically suffice for safe learning. For <span>(T = infty )</span>, we provide semidefinite representable inner approximations of the set of safe initial conditions and show that one trajectory generically suffices for safe learning. Finally, we extend a number of our results to the cases where the initial uncertainty set contains sparse, low-rank, or permutation matrices, or when the dynamical system involves a control input. Our second set of results concerns the problem of safely learning a general class of nonlinear dynamical systems. For the case <span>(T=1)</span>, we give a second-order cone programming based representation of the set of safe initial conditions. For <span>(T=infty )</span>, we provide semidefinite representable inner approximations to the set of safe initial conditions. We show how one can safely collect trajectories and fit a polynomial model of the nonlinear dynamics that is consistent with the initial uncertainty set and best agrees with the observations. We also present extensions of some of our results to the cases where the measurements are noisy or the dynamical system involves disturbances.</p>","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"28 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143125227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Stabilizing Decomposition of Multiparameter Persistence Modules","authors":"Håvard Bakke Bjerkevik","doi":"10.1007/s10208-025-09695-w","DOIUrl":"https://doi.org/10.1007/s10208-025-09695-w","url":null,"abstract":"<p>While decomposition of one-parameter persistence modules behaves nicely, as demonstrated by the algebraic stability theorem, decomposition of multiparameter modules is known to be unstable in a certain precise sense. Until now, it has not been clear that there is any way to get around this and build a meaningful stability theory for multiparameter module decomposition. We introduce new tools, in particular <span>(epsilon )</span>-refinements and <span>(epsilon )</span>-erosion neighborhoods, to start building such a theory. We then define the <span>(epsilon )</span>-pruning of a module, which is a new invariant acting like a “refined barcode” that shows great promise to extract features from a module by approximately decomposing it. Our main theorem can be interpreted as a generalization of the algebraic stability theorem to multiparameter modules up to a factor of 2<i>r</i>, where <i>r</i> is the maximal pointwise dimension of one of the modules. Furthermore, we show that the factor 2<i>r</i> is close to optimal. Finally, we discuss the possibility of strengthening the stability theorem for modules that decompose into pointwise low-dimensional summands, and pose a conjecture phrased purely in terms of basic linear algebra and graph theory that seems to capture the difficulty of doing this. We also show that this conjecture is relevant for other areas of multipersistence, like the computational complexity of approximating the interleaving distance, and recent applications of relative homological algebra to multipersistence.</p>","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"48 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143049647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Oscar Leong, Eliza O’ Reilly, Yong Sheng Soh, Venkat Chandrasekaran
{"title":"Optimal Regularization for a Data Source","authors":"Oscar Leong, Eliza O’ Reilly, Yong Sheng Soh, Venkat Chandrasekaran","doi":"10.1007/s10208-025-09693-y","DOIUrl":"https://doi.org/10.1007/s10208-025-09693-y","url":null,"abstract":"<p>In optimization-based approaches to inverse problems and to statistical estimation, it is common to augment criteria that enforce data fidelity with a regularizer that promotes desired structural properties in the solution. The choice of a suitable regularizer is typically driven by a combination of prior domain information and computational considerations. Convex regularizers are attractive computationally but they are limited in the types of structure they can promote. On the other hand, nonconvex regularizers are more flexible in the forms of structure they can promote and they have showcased strong empirical performance in some applications, but they come with the computational challenge of solving the associated optimization problems. In this paper, we seek a systematic understanding of the power and the limitations of convex regularization by investigating the following questions: Given a distribution, what is the optimal regularizer for data drawn from the distribution? What properties of a data source govern whether the optimal regularizer is convex? We address these questions for the class of regularizers specified by functionals that are continuous, positively homogeneous, and positive away from the origin. We say that a regularizer is optimal for a data distribution if the Gibbs density with energy given by the regularizer maximizes the population likelihood (or equivalently, minimizes cross-entropy loss) over all regularizer-induced Gibbs densities. As the regularizers we consider are in one-to-one correspondence with star bodies, we leverage dual Brunn-Minkowski theory to show that a radial function derived from a data distribution is akin to a “computational sufficient statistic” as it is the key quantity for identifying optimal regularizers and for assessing the amenability of a data source to convex regularization. Using tools such as <span>(Gamma )</span>-convergence from variational analysis, we show that our results are robust in the sense that the optimal regularizers for a sample drawn from a distribution converge to their population counterparts as the sample size grows large. Finally, we give generalization guarantees for various families of star bodies that recover previous results for polyhedral regularizers (i.e., dictionary learning) and lead to new ones for a variety of classes of star bodies. </p>","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"48 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143049667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sharp Bounds for Max-sliced Wasserstein Distances","authors":"March T. Boedihardjo","doi":"10.1007/s10208-025-09690-1","DOIUrl":"https://doi.org/10.1007/s10208-025-09690-1","url":null,"abstract":"<p>We obtain essentially matching upper and lower bounds for the expected max-sliced 1-Wasserstein distance between a probability measure on a separable Hilbert space and its empirical distribution from <i>n</i> samples. By proving a Banach space version of this result, we also obtain an upper bound, that is sharp up to a log factor, for the expected max-sliced 2-Wasserstein distance between a symmetric probability measure <span>(mu )</span> on a Euclidean space and its symmetrized empirical distribution in terms of the operator norm of the covariance matrix of <span>(mu )</span> and the diameter of the support of <span>(mu )</span>.</p>","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"22 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143020600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Active Manifolds, Stratifications, and Convergence to Local Minima in Nonsmooth Optimization","authors":"Damek Davis, Dmitriy Drusvyatskiy, Liwei Jiang","doi":"10.1007/s10208-025-09691-0","DOIUrl":"https://doi.org/10.1007/s10208-025-09691-0","url":null,"abstract":"<p>In this work, we develop new regularity conditions in nonsmooth analysis that parallel the stratification conditions of Whitney, Kuo, and Verdier. They quantify how subgradients interact with a certain “active manifold” that captures the nonsmooth activity of the function. Based on these new conditions, we show that several subgradient-based methods converge only to local minimizers when applied to generic Lipschitz and subdifferentially regular functions that are definable in an o-minimal structure. At a high level, our argument is appealingly transparent: we interpret the nonsmooth dynamics as an approximate Riemannian gradient method on the active manifold. As a by-product, we extend the stochastic processes techniques of Pemantle.</p>","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"74 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143020602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimal Convergence Rates for the Spectrum of the Graph Laplacian on Poisson Point Clouds","authors":"Scott Armstrong, Raghavendra Venkatraman","doi":"10.1007/s10208-025-09696-9","DOIUrl":"https://doi.org/10.1007/s10208-025-09696-9","url":null,"abstract":"<p>We prove optimal convergence rates for eigenvalues and eigenvectors of the graph Laplacian on Poisson point clouds. Our results are valid down to the critical percolation threshold, yielding error estimates for relatively sparse graphs.</p>","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"20 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143020601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Accuracy Controlled Schemes for the Eigenvalue Problem of the Radiative Transfer Equation","authors":"Wolfgang Dahmen, Olga Mula","doi":"10.1007/s10208-025-09694-x","DOIUrl":"https://doi.org/10.1007/s10208-025-09694-x","url":null,"abstract":"<p>The criticality problem in nuclear engineering asks for the principal eigenpair of a Boltzmann operator describing neutron transport in a reactor core. Being able to reliably design, and control such reactors requires assessing these quantities within quantifiable accuracy tolerances. In this paper, we propose a paradigm that deviates from the common practice of approximately solving the corresponding spectral problem with a fixed, presumably sufficiently fine discretization. Instead, the present approach is based on first contriving iterative schemes, formulated in function space, that are shown to converge at a quantitative rate without assuming any a priori excess regularity properties, and that exploit only properties of the optical parameters in the underlying radiative transfer model. We develop the analytical and numerical tools for approximately realizing each iteration step within judiciously chosen accuracy tolerances, verified by a posteriori estimates, so as to still warrant quantifiable convergence to the exact eigenpair. This is carried out in full first for a Newton scheme. Since this is only locally convergent we analyze in addition the convergence of a power iteration in function space to produce sufficiently accurate initial guesses. Here we have to deal with intrinsic difficulties posed by compact but unsymmetric operators preventing standard arguments used in the finite dimensional case. Our main point is that we can avoid any condition on an initial guess to be already in a small neighborhood of the exact solution. We close with a discussion of remaining intrinsic obstructions to a certifiable numerical implementation, mainly related to not knowing the gap between the principal eigenvalue and the next smaller one in modulus. </p>","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"20 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142991448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Conley Index for Multivalued Maps on Finite Topological Spaces","authors":"Jonathan Barmak, Marian Mrozek, Thomas Wanner","doi":"10.1007/s10208-024-09685-4","DOIUrl":"https://doi.org/10.1007/s10208-024-09685-4","url":null,"abstract":"<p>We develop Conley’s theory for multivalued maps on finite topological spaces. More precisely, for discrete-time dynamical systems generated by the iteration of a multivalued map which satisfies appropriate regularity conditions, we establish the notions of isolated invariant sets and index pairs, and use them to introduce a well-defined Conley index. In addition, we verify some of its fundamental properties such as the Ważewski property and continuation.</p>","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"70 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142797022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Generalized Pseudospectral Shattering and Inverse-Free Matrix Pencil Diagonalization","authors":"James Demmel, Ioana Dumitriu, Ryan Schneider","doi":"10.1007/s10208-024-09682-7","DOIUrl":"https://doi.org/10.1007/s10208-024-09682-7","url":null,"abstract":"<p>We present a randomized, inverse-free algorithm for producing an approximate diagonalization of any <span>(n times n)</span> matrix pencil (<i>A</i>, <i>B</i>). The bulk of the algorithm rests on a randomized divide-and-conquer eigensolver for the generalized eigenvalue problem originally proposed by Ballard, Demmel and Dumitriu (Technical Report 2010). We demonstrate that this divide-and-conquer approach can be formulated to succeed with high probability provided the input pencil is sufficiently well-behaved, which is accomplished by generalizing the recent pseudospectral shattering work of Banks, Garza-Vargas, Kulkarni and Srivastava (Foundations of Computational Mathematics 2023). In particular, we show that perturbing and scaling (<i>A</i>, <i>B</i>) regularizes its pseudospectra, allowing divide-and-conquer to run over a simple random grid and in turn producing an accurate diagonalization of (<i>A</i>, <i>B</i>) in the backward error sense. The main result of the paper states the existence of a randomized algorithm that with high probability (and in exact arithmetic) produces invertible <i>S</i>, <i>T</i> and diagonal <i>D</i> such that <span>(||A - SDT^{-1}||_2 le varepsilon )</span> and <span>(||B - ST^{-1}||_2 le varepsilon )</span> in at most <span>(O left( log ^2 left( frac{n}{varepsilon } right) T_{text {MM}}(n) right) )</span> operations, where <span>(T_{text {MM}}(n))</span> is the asymptotic complexity of matrix multiplication. This not only provides a new set of guarantees for highly parallel generalized eigenvalue solvers but also establishes nearly matrix multiplication time as an upper bound on the complexity of inverse-free, exact-arithmetic matrix pencil diagonalization.</p>","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"47 1","pages":""},"PeriodicalIF":3.0,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142796989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}