Stabilizing Decomposition of Multiparameter Persistence Modules

IF 2.5 1区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS
Håvard Bakke Bjerkevik
{"title":"Stabilizing Decomposition of Multiparameter Persistence Modules","authors":"Håvard Bakke Bjerkevik","doi":"10.1007/s10208-025-09695-w","DOIUrl":null,"url":null,"abstract":"<p>While decomposition of one-parameter persistence modules behaves nicely, as demonstrated by the algebraic stability theorem, decomposition of multiparameter modules is known to be unstable in a certain precise sense. Until now, it has not been clear that there is any way to get around this and build a meaningful stability theory for multiparameter module decomposition. We introduce new tools, in particular <span>\\(\\epsilon \\)</span>-refinements and <span>\\(\\epsilon \\)</span>-erosion neighborhoods, to start building such a theory. We then define the <span>\\(\\epsilon \\)</span>-pruning of a module, which is a new invariant acting like a “refined barcode” that shows great promise to extract features from a module by approximately decomposing it. Our main theorem can be interpreted as a generalization of the algebraic stability theorem to multiparameter modules up to a factor of 2<i>r</i>, where <i>r</i> is the maximal pointwise dimension of one of the modules. Furthermore, we show that the factor 2<i>r</i> is close to optimal. Finally, we discuss the possibility of strengthening the stability theorem for modules that decompose into pointwise low-dimensional summands, and pose a conjecture phrased purely in terms of basic linear algebra and graph theory that seems to capture the difficulty of doing this. We also show that this conjecture is relevant for other areas of multipersistence, like the computational complexity of approximating the interleaving distance, and recent applications of relative homological algebra to multipersistence.</p>","PeriodicalId":55151,"journal":{"name":"Foundations of Computational Mathematics","volume":"48 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10208-025-09695-w","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

While decomposition of one-parameter persistence modules behaves nicely, as demonstrated by the algebraic stability theorem, decomposition of multiparameter modules is known to be unstable in a certain precise sense. Until now, it has not been clear that there is any way to get around this and build a meaningful stability theory for multiparameter module decomposition. We introduce new tools, in particular \(\epsilon \)-refinements and \(\epsilon \)-erosion neighborhoods, to start building such a theory. We then define the \(\epsilon \)-pruning of a module, which is a new invariant acting like a “refined barcode” that shows great promise to extract features from a module by approximately decomposing it. Our main theorem can be interpreted as a generalization of the algebraic stability theorem to multiparameter modules up to a factor of 2r, where r is the maximal pointwise dimension of one of the modules. Furthermore, we show that the factor 2r is close to optimal. Finally, we discuss the possibility of strengthening the stability theorem for modules that decompose into pointwise low-dimensional summands, and pose a conjecture phrased purely in terms of basic linear algebra and graph theory that seems to capture the difficulty of doing this. We also show that this conjecture is relevant for other areas of multipersistence, like the computational complexity of approximating the interleaving distance, and recent applications of relative homological algebra to multipersistence.

多参数持久模块的稳定分解
单参数持久模块的分解具有良好的代数稳定性定理,而多参数模块的分解在一定精确意义上是不稳定的。到目前为止,还不清楚是否有任何方法可以绕过这个问题,并为多参数模块分解建立一个有意义的稳定性理论。我们引入了新的工具,特别是\(\epsilon \) -精化和\(\epsilon \) -侵蚀邻域,开始建立这样一个理论。然后我们定义一个模块的\(\epsilon \) -剪枝,这是一个新的不变量,它的作用就像一个“精致的条形码”,它很有希望通过近似分解从模块中提取特征。我们的主要定理可以被解释为代数稳定性定理在多参数模上的推广,直到2r的因子,其中r是其中一个模的最大点向维。进一步,我们证明因子2r接近最优。最后,我们讨论了加强分解为点向低维和的模块的稳定性定理的可能性,并提出了一个纯粹用基本线性代数和图论来表达的猜想,似乎抓住了这样做的困难。我们还表明,这个猜想与多持久性的其他领域有关,比如近似交错距离的计算复杂性,以及相对同态代数在多持久性中的最新应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Foundations of Computational Mathematics
Foundations of Computational Mathematics 数学-计算机:理论方法
CiteScore
6.90
自引率
3.30%
发文量
46
审稿时长
>12 weeks
期刊介绍: Foundations of Computational Mathematics (FoCM) will publish research and survey papers of the highest quality which further the understanding of the connections between mathematics and computation. The journal aims to promote the exploration of all fundamental issues underlying the creative tension among mathematics, computer science and application areas unencumbered by any external criteria such as the pressure for applications. The journal will thus serve an increasingly important and applicable area of mathematics. The journal hopes to further the understanding of the deep relationships between mathematical theory: analysis, topology, geometry and algebra, and the computational processes as they are evolving in tandem with the modern computer. With its distinguished editorial board selecting papers of the highest quality and interest from the international community, FoCM hopes to influence both mathematics and computation. Relevance to applications will not constitute a requirement for the publication of articles. The journal does not accept code for review however authors who have code/data related to the submission should include a weblink to the repository where the data/code is stored.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信