Geometriae Dedicata最新文献

筛选
英文 中文
Vector bundles and connections on Riemann surfaces with projective structure 具有投影结构的黎曼曲面上的向量束和连接
4区 数学
Geometriae Dedicata Pub Date : 2023-10-24 DOI: 10.1007/s10711-023-00848-1
Indranil Biswas, Jacques Hurtubise, Vladimir Roubtsov
{"title":"Vector bundles and connections on Riemann surfaces with projective structure","authors":"Indranil Biswas, Jacques Hurtubise, Vladimir Roubtsov","doi":"10.1007/s10711-023-00848-1","DOIUrl":"https://doi.org/10.1007/s10711-023-00848-1","url":null,"abstract":"","PeriodicalId":55103,"journal":{"name":"Geometriae Dedicata","volume":"1 8","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135220356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Holomorphic differential forms on moduli spaces of stable curves 稳定曲线模空间上的全纯微分形式
4区 数学
Geometriae Dedicata Pub Date : 2023-10-24 DOI: 10.1007/s10711-023-00851-6
Claudio Fontanari
{"title":"Holomorphic differential forms on moduli spaces of stable curves","authors":"Claudio Fontanari","doi":"10.1007/s10711-023-00851-6","DOIUrl":"https://doi.org/10.1007/s10711-023-00851-6","url":null,"abstract":"Abstract We prove that the space of holomorphic p -forms on the moduli space $$overline{mathcal {M}}_{g,n}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mover> <mml:mi>M</mml:mi> <mml:mo>¯</mml:mo> </mml:mover> <mml:mrow> <mml:mi>g</mml:mi> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> </mml:mrow> </mml:msub> </mml:math> of stable curves of genus g with n marked points vanishes for $$p=14, 16, 18$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>=</mml:mo> <mml:mn>14</mml:mn> <mml:mo>,</mml:mo> <mml:mn>16</mml:mn> <mml:mo>,</mml:mo> <mml:mn>18</mml:mn> </mml:mrow> </mml:math> unconditionally and also for $$p=20$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>=</mml:mo> <mml:mn>20</mml:mn> </mml:mrow> </mml:math> under a natural assumption in the case $$g=3$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>g</mml:mi> <mml:mo>=</mml:mo> <mml:mn>3</mml:mn> </mml:mrow> </mml:math> . This result is consistent with the Langlands program and it is obtained by applying the Arbarello–Cornalba inductive approach to the cohomology of moduli spaces.","PeriodicalId":55103,"journal":{"name":"Geometriae Dedicata","volume":"64 18","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135267099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Length minima for an infinite family of filling closed curves on a one-holed torus 一孔环面上无限族填充闭合曲线的长度最小值
4区 数学
Geometriae Dedicata Pub Date : 2023-10-24 DOI: 10.1007/s10711-023-00856-1
Zhongzi Wang, Ying Zhang
{"title":"Length minima for an infinite family of filling closed curves on a one-holed torus","authors":"Zhongzi Wang, Ying Zhang","doi":"10.1007/s10711-023-00856-1","DOIUrl":"https://doi.org/10.1007/s10711-023-00856-1","url":null,"abstract":"","PeriodicalId":55103,"journal":{"name":"Geometriae Dedicata","volume":"2016 7","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135268172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cat(0) polygonal complexes are 2-median Cat(0)多边形配合物为2中位数
4区 数学
Geometriae Dedicata Pub Date : 2023-10-24 DOI: 10.1007/s10711-023-00841-8
Shaked Bader, Nir Lazarovich
{"title":"Cat(0) polygonal complexes are 2-median","authors":"Shaked Bader, Nir Lazarovich","doi":"10.1007/s10711-023-00841-8","DOIUrl":"https://doi.org/10.1007/s10711-023-00841-8","url":null,"abstract":"Abstract Median spaces are spaces in which for every three points the three intervals between them intersect at a single point. It is well known that rank-1 affine buildings are median spaces, but by a result of Haettel, higher rank buildings are not even coarse median. We define the notion of “2-median space”, which roughly says that for every four points the minimal discs filling the four geodesic triangles they span intersect in a point or a geodesic segment. We show that CAT(0) Euclidean polygonal complexes, and in particular rank-2 affine buildings, are 2-median. In the appendix, we recover a special case of a result of Stadler of a Fary–Milnor type theorem and show in elementary tools that a minimal disc filling a geodesic triangle is injective.","PeriodicalId":55103,"journal":{"name":"Geometriae Dedicata","volume":"34 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135267096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uniruledness of some low-dimensional ball quotients 一些低维球商的唯一性
4区 数学
Geometriae Dedicata Pub Date : 2023-10-18 DOI: 10.1007/s10711-023-00844-5
Yota Maeda
{"title":"Uniruledness of some low-dimensional ball quotients","authors":"Yota Maeda","doi":"10.1007/s10711-023-00844-5","DOIUrl":"https://doi.org/10.1007/s10711-023-00844-5","url":null,"abstract":"","PeriodicalId":55103,"journal":{"name":"Geometriae Dedicata","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135823790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Products of two involutions in orthogonal and symplectic groups 正交群和辛群中两个对合的乘积
4区 数学
Geometriae Dedicata Pub Date : 2023-10-16 DOI: 10.1007/s10711-023-00845-4
Clément de Seguins Pazzis
{"title":"Products of two involutions in orthogonal and symplectic groups","authors":"Clément de Seguins Pazzis","doi":"10.1007/s10711-023-00845-4","DOIUrl":"https://doi.org/10.1007/s10711-023-00845-4","url":null,"abstract":"","PeriodicalId":55103,"journal":{"name":"Geometriae Dedicata","volume":"262 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136113949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Monodromies of projective structures on surface of finite-type 有限型曲面上射影结构的单态
4区 数学
Geometriae Dedicata Pub Date : 2023-10-13 DOI: 10.1007/s10711-023-00849-0
Genyle Nascimento
{"title":"Monodromies of projective structures on surface of finite-type","authors":"Genyle Nascimento","doi":"10.1007/s10711-023-00849-0","DOIUrl":"https://doi.org/10.1007/s10711-023-00849-0","url":null,"abstract":"","PeriodicalId":55103,"journal":{"name":"Geometriae Dedicata","volume":"53 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135805174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Bianchi and Hilbert–Blumenthal quaternionic orbifolds Bianchi和Hilbert-Blumenthal四元离子轨道
4区 数学
Geometriae Dedicata Pub Date : 2023-10-11 DOI: 10.1007/s10711-023-00847-2
Alberto Verjovsky, Adrian Zenteno
{"title":"Bianchi and Hilbert–Blumenthal quaternionic orbifolds","authors":"Alberto Verjovsky, Adrian Zenteno","doi":"10.1007/s10711-023-00847-2","DOIUrl":"https://doi.org/10.1007/s10711-023-00847-2","url":null,"abstract":"","PeriodicalId":55103,"journal":{"name":"Geometriae Dedicata","volume":"53 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136209031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Great circle fibrations and contact structures on odd-dimensional spheres 奇维球面上的大圆振动和接触结构
4区 数学
Geometriae Dedicata Pub Date : 2023-10-10 DOI: 10.1007/s10711-023-00830-x
Herman Gluck, Jingye Yang
{"title":"Great circle fibrations and contact structures on odd-dimensional spheres","authors":"Herman Gluck, Jingye Yang","doi":"10.1007/s10711-023-00830-x","DOIUrl":"https://doi.org/10.1007/s10711-023-00830-x","url":null,"abstract":"","PeriodicalId":55103,"journal":{"name":"Geometriae Dedicata","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136254962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Constructions of homotopy 4-spheres by pochette surgery 用pochette手术构造同伦4球
4区 数学
Geometriae Dedicata Pub Date : 2023-10-07 DOI: 10.1007/s10711-023-00837-4
Tatsumasa Suzuki
{"title":"Constructions of homotopy 4-spheres by pochette surgery","authors":"Tatsumasa Suzuki","doi":"10.1007/s10711-023-00837-4","DOIUrl":"https://doi.org/10.1007/s10711-023-00837-4","url":null,"abstract":"Abstract The boundary sum of the product of a circle with a 3-ball and the product of a disk with a 2-sphere is called a pochette. Pochette surgery, which was discovered by Iwase and Matsumoto, is a generalization of Gluck surgery and a special case of torus surgery. For a pochette P embedded in a 4-manifold X , a pochette surgery on X is the operation of removing the interior of P and gluing P by a diffeomorphism of the boundary of P . We present an explicit diffeomorphism of the boundary of P for constructing a 4-manifold after any pochette surgery. We also describe a necessary and sufficient condition for some pochette surgeries on any simply-connected closed 4-manifold create a 4-manifold with the same homotopy type of the original 4-manifold. In this paper we construct infinitely many embeddings of a pochette into the 4-sphere and prove that homotopy 4-spheres obtained from surgeries along these embedded pochettes are all diffeomorphic to the 4-sphere by some explicit handle calculus and relative handle calculus.","PeriodicalId":55103,"journal":{"name":"Geometriae Dedicata","volume":"68 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135254980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信