Cat(0) polygonal complexes are 2-median

Pub Date : 2023-10-24 DOI:10.1007/s10711-023-00841-8
Shaked Bader, Nir Lazarovich
{"title":"Cat(0) polygonal complexes are 2-median","authors":"Shaked Bader, Nir Lazarovich","doi":"10.1007/s10711-023-00841-8","DOIUrl":null,"url":null,"abstract":"Abstract Median spaces are spaces in which for every three points the three intervals between them intersect at a single point. It is well known that rank-1 affine buildings are median spaces, but by a result of Haettel, higher rank buildings are not even coarse median. We define the notion of “2-median space”, which roughly says that for every four points the minimal discs filling the four geodesic triangles they span intersect in a point or a geodesic segment. We show that CAT(0) Euclidean polygonal complexes, and in particular rank-2 affine buildings, are 2-median. In the appendix, we recover a special case of a result of Stadler of a Fary–Milnor type theorem and show in elementary tools that a minimal disc filling a geodesic triangle is injective.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10711-023-00841-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Median spaces are spaces in which for every three points the three intervals between them intersect at a single point. It is well known that rank-1 affine buildings are median spaces, but by a result of Haettel, higher rank buildings are not even coarse median. We define the notion of “2-median space”, which roughly says that for every four points the minimal discs filling the four geodesic triangles they span intersect in a point or a geodesic segment. We show that CAT(0) Euclidean polygonal complexes, and in particular rank-2 affine buildings, are 2-median. In the appendix, we recover a special case of a result of Stadler of a Fary–Milnor type theorem and show in elementary tools that a minimal disc filling a geodesic triangle is injective.

Abstract Image

分享
查看原文
Cat(0)多边形配合物为2中位数
中位数空间是每三个点之间的三个间隔相交于一个点的空间。众所周知,1级仿射建筑是中位数空间,但由于Haettel,更高级别的建筑甚至不是粗中位数。我们定义了“2-中位数空间”的概念,粗略地说,对于每四个点,填充四个测地线三角形的最小圆盘相交于一个点或测地线段。我们证明了CAT(0)欧几里得多边形复合物,特别是2阶仿射建筑物,是2中位数的。在附录中,我们恢复了法里-米尔诺型定理的Stadler结果的一个特例,并在初等工具中证明了填充测地三角形的极小圆盘是内射的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信