Homology Homotopy and Applications最新文献

筛选
英文 中文
The trace of the local $mathbb{A}^1$-degree 局部$mathbb{A}^1$-度的跟踪
IF 0.5 4区 数学
Homology Homotopy and Applications Pub Date : 2021-01-01 DOI: 10.4310/hha.2021.v23.n1.a13
T. Brazelton, Robert Burklund, Stephen McKean, M. Montoro, Morgan Opie
{"title":"The trace of the local $mathbb{A}^1$-degree","authors":"T. Brazelton, Robert Burklund, Stephen McKean, M. Montoro, Morgan Opie","doi":"10.4310/hha.2021.v23.n1.a13","DOIUrl":"https://doi.org/10.4310/hha.2021.v23.n1.a13","url":null,"abstract":"","PeriodicalId":55050,"journal":{"name":"Homology Homotopy and Applications","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70434590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Magnitude homology, diagonality, and median spaces 大小同调,对角性和中位数空间
IF 0.5 4区 数学
Homology Homotopy and Applications Pub Date : 2021-01-01 DOI: 10.4310/HHA.2021.V23.N2.A7
R'emi Bottinelli, T. Kaiser
{"title":"Magnitude homology, diagonality, and median spaces","authors":"R'emi Bottinelli, T. Kaiser","doi":"10.4310/HHA.2021.V23.N2.A7","DOIUrl":"https://doi.org/10.4310/HHA.2021.V23.N2.A7","url":null,"abstract":"","PeriodicalId":55050,"journal":{"name":"Homology Homotopy and Applications","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70435321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
The local hyperbolicity of $mathbf{A}_n^2$-complexes $mathbf{A}_n^2$-复数的局部双曲性
IF 0.5 4区 数学
Homology Homotopy and Applications Pub Date : 2021-01-01 DOI: 10.4310/hha.2021.v23.n1.a19
Zhongjian Zhu, Jianzhong Pan
{"title":"The local hyperbolicity of $mathbf{A}_n^2$-complexes","authors":"Zhongjian Zhu, Jianzhong Pan","doi":"10.4310/hha.2021.v23.n1.a19","DOIUrl":"https://doi.org/10.4310/hha.2021.v23.n1.a19","url":null,"abstract":"","PeriodicalId":55050,"journal":{"name":"Homology Homotopy and Applications","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70434598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vector bundles and cohomotopies of $operatorname{spin} 5$-manifolds $operatorname{spin} 5$-流形的向量束和上同伦
IF 0.5 4区 数学
Homology Homotopy and Applications Pub Date : 2021-01-01 DOI: 10.4310/hha.2021.v23.n1.a9
Panagiotis Konstantis
{"title":"Vector bundles and cohomotopies of $operatorname{spin} 5$-manifolds","authors":"Panagiotis Konstantis","doi":"10.4310/hha.2021.v23.n1.a9","DOIUrl":"https://doi.org/10.4310/hha.2021.v23.n1.a9","url":null,"abstract":"","PeriodicalId":55050,"journal":{"name":"Homology Homotopy and Applications","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70434676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strong version of Snake Lemma in exact categories Snake引理在精确分类中的强版本
IF 0.5 4区 数学
Homology Homotopy and Applications Pub Date : 2021-01-01 DOI: 10.4310/HHA.2021.V23.N2.A9
Shi Rong, Pu Zhang
{"title":"Strong version of Snake Lemma in exact categories","authors":"Shi Rong, Pu Zhang","doi":"10.4310/HHA.2021.V23.N2.A9","DOIUrl":"https://doi.org/10.4310/HHA.2021.V23.N2.A9","url":null,"abstract":"","PeriodicalId":55050,"journal":{"name":"Homology Homotopy and Applications","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70435335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The wedge family of the cohomology of the $mathbb{C}$-motivic Steenrod algebra $mathbb{C}$动机Steenrod代数上同调的楔族
IF 0.5 4区 数学
Homology Homotopy and Applications Pub Date : 2021-01-01 DOI: 10.4310/hha.2021.v23.n1.a7
H. Thai
{"title":"The wedge family of the cohomology of the $mathbb{C}$-motivic Steenrod algebra","authors":"H. Thai","doi":"10.4310/hha.2021.v23.n1.a7","DOIUrl":"https://doi.org/10.4310/hha.2021.v23.n1.a7","url":null,"abstract":"","PeriodicalId":55050,"journal":{"name":"Homology Homotopy and Applications","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70434665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Left Bousfield localization and Eilenberg–Moore categories 左Bousfield定位和Eilenberg-Moore分类
IF 0.5 4区 数学
Homology Homotopy and Applications Pub Date : 2021-01-01 DOI: 10.4310/hha.2021.v23.n2.a16
M. Batanin, David White
{"title":"Left Bousfield localization and Eilenberg–Moore categories","authors":"M. Batanin, David White","doi":"10.4310/hha.2021.v23.n2.a16","DOIUrl":"https://doi.org/10.4310/hha.2021.v23.n2.a16","url":null,"abstract":"","PeriodicalId":55050,"journal":{"name":"Homology Homotopy and Applications","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70434716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Fiber integration of gerbes and Deligne line bundles 光纤集成gerbes和Deligne线束
IF 0.5 4区 数学
Homology Homotopy and Applications Pub Date : 2020-12-31 DOI: 10.4310/hha.2023.v25.n1.a2
E. Aldrovandi, N. Ramachandran
{"title":"Fiber integration of gerbes and Deligne line bundles","authors":"E. Aldrovandi, N. Ramachandran","doi":"10.4310/hha.2023.v25.n1.a2","DOIUrl":"https://doi.org/10.4310/hha.2023.v25.n1.a2","url":null,"abstract":"Let $pi: X to S$ be a family of smooth projective curves, and let $L$ and $M$ be a pair of line bundles on $X$. We show that Deligne's line bundle $langle{L,M}rangle$ can be obtained from the $mathcal{K}_2$-gerbe $G_{L,M}$ constructed in a previous work by the authors via an integration along the fiber map for gerbes that categorifies the well known one arising from the Leray spectral sequence of $pi$. Our construction provides a full account of the biadditivity properties of $langle {L,M}rangle$. The functorial description of the low degree maps in the Leray spectral sequence for $pi$ we develop are of independent interest, and along the course we provide an example of their application to the Brauer group.","PeriodicalId":55050,"journal":{"name":"Homology Homotopy and Applications","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45876607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Spectral sequences of a Morse shelling 莫尔斯炮弹的光谱序列
IF 0.5 4区 数学
Homology Homotopy and Applications Pub Date : 2020-12-03 DOI: 10.4310/hha.2022.v24.n2.a11
Jean-Yves Welschinger
{"title":"Spectral sequences of a Morse shelling","authors":"Jean-Yves Welschinger","doi":"10.4310/hha.2022.v24.n2.a11","DOIUrl":"https://doi.org/10.4310/hha.2022.v24.n2.a11","url":null,"abstract":"We recently introduced a notion of tilings of the geometric realization of a finite simplicial complex and related those tilings to the discrete Morse theory of R. Forman, especially when they have the property to be shellable, a property shared by the classical shellable complexes. We now observe that every such tiling supports a quiver which is acyclic precisely when the tiling is shellable and then that every shelling induces two spectral sequences which converge to the (co)homology of the complex. Their first pages are free modules over the critical tiles of the tiling.","PeriodicalId":55050,"journal":{"name":"Homology Homotopy and Applications","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2020-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46351056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Local to global principles for generation time over commutative noetherian rings 交换诺瑟环上生成时间的局部到全局原理
IF 0.5 4区 数学
Homology Homotopy and Applications Pub Date : 2020-12-02 DOI: 10.4310/HHA.2021.V23.N2.A10
Janina C. Letz
{"title":"Local to global principles for generation time over commutative noetherian rings","authors":"Janina C. Letz","doi":"10.4310/HHA.2021.V23.N2.A10","DOIUrl":"https://doi.org/10.4310/HHA.2021.V23.N2.A10","url":null,"abstract":"In the derived category of modules over a commutative noetherian ring a complex $G$ is said to generate a complex $X$ if the latter can be obtained from the former by taking summands and finitely many cones. The number of cones required in this process is the generation time of $X$. In this paper we present some local to global type results for computing this invariant, and discuss applications.","PeriodicalId":55050,"journal":{"name":"Homology Homotopy and Applications","volume":null,"pages":null},"PeriodicalIF":0.5,"publicationDate":"2020-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42109048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信