Local to global principles for generation time over commutative noetherian rings

IF 0.8 4区 数学 Q2 MATHEMATICS
Janina C. Letz
{"title":"Local to global principles for generation time over commutative noetherian rings","authors":"Janina C. Letz","doi":"10.4310/HHA.2021.V23.N2.A10","DOIUrl":null,"url":null,"abstract":"In the derived category of modules over a commutative noetherian ring a complex $G$ is said to generate a complex $X$ if the latter can be obtained from the former by taking summands and finitely many cones. The number of cones required in this process is the generation time of $X$. In this paper we present some local to global type results for computing this invariant, and discuss applications.","PeriodicalId":55050,"journal":{"name":"Homology Homotopy and Applications","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2020-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Homology Homotopy and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/HHA.2021.V23.N2.A10","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 12

Abstract

In the derived category of modules over a commutative noetherian ring a complex $G$ is said to generate a complex $X$ if the latter can be obtained from the former by taking summands and finitely many cones. The number of cones required in this process is the generation time of $X$. In this paper we present some local to global type results for computing this invariant, and discuss applications.
交换诺瑟环上生成时间的局部到全局原理
在可交换诺瑟环上模的派生范畴中,如果复$G$可以通过取和和和有限多个锥由复$X$得到,则称复$G$生成复$X$。这个过程中需要的锥体数量就是X的生成时间。本文给出了计算该不变量的局部到全局型结果,并讨论了其应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
37
审稿时长
>12 weeks
期刊介绍: Homology, Homotopy and Applications is a refereed journal which publishes high-quality papers in the general area of homotopy theory and algebraic topology, as well as applications of the ideas and results in this area. This means applications in the broadest possible sense, i.e. applications to other parts of mathematics such as number theory and algebraic geometry, as well as to areas outside of mathematics, such as computer science, physics, and statistics. Homotopy theory is also intended to be interpreted broadly, including algebraic K-theory, model categories, homotopy theory of varieties, etc. We particularly encourage innovative papers which point the way toward new applications of the subject.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信