{"title":"Completely Distributed Secure Consensus for Multiagent Systems With a General Directed Graph Under Interaction Link Attacks","authors":"Miao Zhao;Jianxiang Xi;Le Wang;Kehan Xia;Yuanshi Zheng","doi":"10.1109/JSYST.2024.3381914","DOIUrl":"10.1109/JSYST.2024.3381914","url":null,"abstract":"This article investigates completely distributed secure consensus control (SCC) of high-order linear and Lipschitz nonlinear multiagent systems (MASs) in the presence of interaction link attacks, respectively, where the design criteria are independent of the interaction topology and the parameters of interaction link attacks. An estimator-based adaptive SCC protocol is proposed to realize SCC, where coupling weights of the virtual distributed reference state estimator (VDRSE) are adaptively adjusted to eliminate the impacts of interaction link attacks. Then, the leader–follower and leaderless structures are unified into a general directed graph framework by decomposing the Laplacian matrix in terms of the root node and nonroot node, and sufficient conditions for VDRSEs achieving reference state consensus and high-order linear MASs achieving SCC are given, respectively. Moreover, main results of high-order linear MASs are extended to Lipschitz nonlinear MASs. Finally, two numerical examples are presented in order to validate the theoretical results.","PeriodicalId":55017,"journal":{"name":"IEEE Systems Journal","volume":"18 2","pages":"1380-1391"},"PeriodicalIF":4.0,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140582896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"GDOP-Based Low-Complexity LEO Satellite Subset Selection for Positioning","authors":"Kyeongjun Ko;M. Humayun Kabir;Jungtai Kim;Wonjae Shin","doi":"10.1109/JSYST.2024.3383092","DOIUrl":"10.1109/JSYST.2024.3383092","url":null,"abstract":"Low Earth orbit (LEO) satellites have recently received considerable attention because they can provide stronger signal power and better bandwidth availability than medium Earth orbit or geosynchronous orbit satellites. However, due to the limited processing capability of a receiver, it is difficult to utilize all the measurements of the available satellites in view when the number of satellites is large. With this motivation, selecting a subset of satellites that are in a good geometry relative to the receiver for precise positioning among a large number of available LEO constellations represents a challenging yet significant problem. Geometric dilution of precision (GDOP) is a metric that provides useful information about the relative geometry between satellites and a receiver. In this study, we put forth a novel GDOP-based satellite selection algorithm that uses efficient matrix decomposition and update rule. Simulation results show that the proposed algorithm achieves a GDOP performance close to the optimal exhaustive search-based schemes while greatly reducing the computational complexity. In particular, the computational complexity is verified in terms of flop counts as well as numerical evaluations.","PeriodicalId":55017,"journal":{"name":"IEEE Systems Journal","volume":"18 2","pages":"989-996"},"PeriodicalIF":4.0,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140582892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shah Fahad;Arman Goudarzi;Rui Bo;Muhammad Waseem;Rashid Al-Ammari;Atif Iqbal
{"title":"A Robust Demand Regulation Strategy for DERs in a Single-Controllable Active Distribution Network","authors":"Shah Fahad;Arman Goudarzi;Rui Bo;Muhammad Waseem;Rashid Al-Ammari;Atif Iqbal","doi":"10.1109/JSYST.2024.3379856","DOIUrl":"10.1109/JSYST.2024.3379856","url":null,"abstract":"Over the past decade, PQ regulation schemes for a single-controllable active distribution network (ADN) using coordination among a network of virtual synchronous generators (VSGs) have been proposed. However, considering the variable nature of intermittent renewable energy sources (IRESs), coupling a cluster of IRESs with the point of common coupling (PCC) of ADN could inflict transient issues for the power management of the whole ADN. To counter these challenges, the proposed study has three main objectives: 1) To propose a modified mathematical model that represents the apparent resistance-reactance at the PCC of ADN in relation to the PQ coordination among the network of VSGs; 2) to utilize the proposed model for deriving a \u0000<inline-formula><tex-math>$mu$</tex-math></inline-formula>\u0000 synthesis-based robust controller that overcomes the uncertainty in the moment of inertia response of all the VSGs; 3) and to present the stability and performance analysis of the proposed controller validated under model uncertainty. Validation of the proposed method and its comparison to the state-of-the-art methods in MATLAB/Simulink environment confirms that the proposed method significantly minimizes the impact of disturbances on the power management of the whole ADN.","PeriodicalId":55017,"journal":{"name":"IEEE Systems Journal","volume":"18 2","pages":"1162-1173"},"PeriodicalIF":4.0,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140582983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Efficient and Flexible Component Placement for Serverless Computing","authors":"Shouxi Luo;Ke Li;Huanlai Xing;Pingzhi Fan","doi":"10.1109/JSYST.2024.3381590","DOIUrl":"10.1109/JSYST.2024.3381590","url":null,"abstract":"Nowadays, serverless computing has been widely employed and viewed as the new paradigm of cloud computing. Technically, serverless applications are made up of function components, which are packaged as specific layered files named container images. In production, different components are designed to partially share layers, and during the deployment, the hosting servers have to download the missing layers first, which might dominate the application startup delay. In this article, we look into optimizing the deployment of serverless applications under the operational goals of \u0000<italic>energy saving</i>\u0000 and \u0000<italic>load balance</i>\u0000, by exploring the reusability among involved container images to conduct content-aware component placements explicitly. We find that the two involved optimization problems can be formulated as \u0000<italic>multi-objective (mixed-)integer linear programs</i>\u0000, and prove that their common building block of minimizing the weighted sum of deployment cost for a given set of serverless components is non-deterministic polynomial (NP)-hard. To be practical, we develop an efficient yet flexible heuristic solution named best fit greedy placement (BFGP), which involves three variants BFGP-Full, BFGP-ES, and BFGP-LB for the problem. Performance studies show that BFGP is effective, expressive, and efficient. It not only achieves near-optimal placement very efficiently but also supports high-level operational policies, such as \u0000<italic>energy saving</i>\u0000 and \u0000<italic>load balance</i>\u0000.","PeriodicalId":55017,"journal":{"name":"IEEE Systems Journal","volume":"18 2","pages":"1104-1114"},"PeriodicalIF":4.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140582669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abuzar B. M. Adam;Mohamed Amine Ouamri;Xiaoyu Wan;Mohammed Saleh Ali Muthanna;Reem Alkanhel;Ammar Muthanna;Xingwang Li
{"title":"Secure Communication in UAV–RIS-Empowered Multiuser Networks: Joint Beamforming, Phase Shift, and UAV Trajectory Optimization","authors":"Abuzar B. M. Adam;Mohamed Amine Ouamri;Xiaoyu Wan;Mohammed Saleh Ali Muthanna;Reem Alkanhel;Ammar Muthanna;Xingwang Li","doi":"10.1109/JSYST.2024.3379456","DOIUrl":"10.1109/JSYST.2024.3379456","url":null,"abstract":"In this article, we study the secure communication in unmanned aerial vehicle (UAV) aided and reconfigurable intelligent surface (RIS) empowered multiuser networks. In the proposed configuration, we consider UAV-mounted RIS to reflect the signal between the base station and the legitimate users in the presence of eavesdroppers. The problem is formulated as secrecy rate maximization with channel uncertainty constraints, which is nonconvex. Therefore, we decouple it into beamforming, phase shift, and UAV trajectory subproblems which are jointly optimized. For the beamforming and phase shift subproblems, we apply S-procedure and general sign-definiteness to transform them into tractable forms. And for the UAV trajectory, we unroll the constraints and apply first-order Taylor transform and the difference of two convex functions (DC) to obtain a relaxed convex problem that can be numerically solved. The proposed solution show effectiveness and improved the secrecy rate of the network.","PeriodicalId":55017,"journal":{"name":"IEEE Systems Journal","volume":"18 2","pages":"1009-1019"},"PeriodicalIF":4.0,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140582990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jie Wang;Jiamin Li;Pengcheng Zhu;Dongming Wang;Bin Sheng;Xiaohu You
{"title":"Adaptive Feedback-Aided Hybrid Random Access for mURLLC Service Over Cell-Free Networks","authors":"Jie Wang;Jiamin Li;Pengcheng Zhu;Dongming Wang;Bin Sheng;Xiaohu You","doi":"10.1109/JSYST.2024.3379281","DOIUrl":"10.1109/JSYST.2024.3379281","url":null,"abstract":"As dominating 6G-standard service, massive ultrareliable low-latency communications (mURLLC) strive to meet the strict requirements of massive users on latency and error rate. Compared with the traditional grant-based random access (GBRA), the grant-free random access (GFRA) allows users to directly transmit data, which avoid heavy signaling overhead and reduce delay. However, pilot collision interference resulting from uncoordinated resource selection in GFRA leads to serious transmission failure, especially in mURLLC scenarios. Therefore, this article proposes an adaptive feedback-aided hybrid random access mechanism based on the advantages of GBRA and GFRA in cell-free networks. In the proposed mechanism, the feedback factors inserted between pilot and data not only make different access policies for massive users in real time, but also achieve an acceptable tradeoff among signaling overhead, access success probability and access delay. The spatial sparsity of cell-free networks is further utilized to solve the pilot collision and improve the successful access probability. The simulation results demonstrate that the proposed hybrid random access mechanism can improve access throughout with lower signaling overhead and better meet the requirements of mURLLC.","PeriodicalId":55017,"journal":{"name":"IEEE Systems Journal","volume":"18 2","pages":"1269-1276"},"PeriodicalIF":4.0,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140585291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Uplink–Downlink Cochannel Interference Cancellation in RIS-Aided Full-Duplex Networks","authors":"Radwa Sultan;Ahmed Shamseldeen","doi":"10.1109/JSYST.2024.3379438","DOIUrl":"10.1109/JSYST.2024.3379438","url":null,"abstract":"We consider a single-cell full-duplex (FD) network. In FD transmission, the downlink rate is degraded by the cochannel interference (CCI) from the active uplink transmission. In this letter, we study how utilizing reconfigurable intelligent surfaces (RIS) can mitigate the effects of the CCI. In a multiple-input-multiple-output (MIMO) network, we consider two scenarios for CCI cancellation. In the first scenario, we assume that both the RIS-base station uplink and downlink direct links suffer from deep fading, i.e., they do not exist. In that case, the CCI minimization problem will be cast as an unconstrained manifold optimization problem. In the second scenario, we assume that the RIS-base station uplink and downlink direct links exist and the RIS controls all the network's links. In that case, the CCI minimization problem will be constrained by the uplink and the downlink channel gains, and accordingly, a penalty-based approach will be adopted to solve the CCI minimization problem. Our results show that utilizing the RIS can be very effective in minimizing the CCI and achieving a higher downlink rate than benchmark schemes.","PeriodicalId":55017,"journal":{"name":"IEEE Systems Journal","volume":"18 2","pages":"1220-1223"},"PeriodicalIF":4.0,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140582989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Distributed Set-Membership Estimation Over Sensor Networks via an Event-Driven Dynamic Quantization Scheme","authors":"Yuhan Xie;Sanbo Ding;Yanhui Jing;Xiangpeng Xie","doi":"10.1109/JSYST.2024.3379572","DOIUrl":"10.1109/JSYST.2024.3379572","url":null,"abstract":"This article addresses the problem of distributed set-membership estimation for a resource-constrained sensor network. The central aim is to acquire the desired ellipsoidal estimation sets while simultaneously accomplishing improved resource allocation efficiency. Toward this aim, a novel periodic-event-driven dynamic quantization algorithm is developed for each sensor node to save bandwidth on wireless channels and improve measurement accuracy. Such a scheme allows the sensors to implement the quantization process in a dynamic manner. In addition, it conducts a remarkable tradeoff between quantization performance and network energy consumption. Subsequently, a sufficient condition is derived in order to obtain the codesign criterion of the estimator and event-driven scheme using a dedicated auxiliary function. Especially, a recursive convex optimization algorithm is proposed to achieve the suitable ellipsoidal estimation constraint. Finally, the validity of the theoretical results is demonstrated through two illustrative examples.","PeriodicalId":55017,"journal":{"name":"IEEE Systems Journal","volume":"18 2","pages":"1151-1161"},"PeriodicalIF":4.0,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140582894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sampled-Data Consensus Protocol for Multiagent Systems Subject to Random Intermittent Actuator Faults","authors":"Ziheng Shi;Wencheng Zou;Jian Guo","doi":"10.1109/JSYST.2024.3377452","DOIUrl":"10.1109/JSYST.2024.3377452","url":null,"abstract":"In this article, the fault-tolerant leader-following consensus problem is investigated for a class of multiagent systems subject to random intermittent actuator faults. The process of actuator fault occurrence for each agent is described by a Markov chain. By the backstepping procedure with virtual controllers designed based on sampled states, a novel fault-tolerant periodic sampled-data consensus protocol scheme is developed to ensure that all followers can track the trajectory of a leader. Different from existing works, in the proposed design framework, both zero and time-variant effectiveness of the actuators are considered. Using the graph theory, probability theory, and Lyapunov function method, the sufficient conditions on the fault-tolerant leader-following consensus are derived. Finally, two numerical examples are provided to demonstrate the effectiveness of the proposed scheme.","PeriodicalId":55017,"journal":{"name":"IEEE Systems Journal","volume":"18 2","pages":"1368-1379"},"PeriodicalIF":4.0,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140582675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Probability-Based Stochastic Stealthy Attacks in Cyber-Physical Systems","authors":"Dan Ye;Xiaoke Liu;Pengyu Li","doi":"10.1109/JSYST.2024.3380584","DOIUrl":"10.1109/JSYST.2024.3380584","url":null,"abstract":"This article focuses on the design of stochastic stealthy attacks in linear cyber-physical systems (CPSs), where the objective of attackers is to degrade the system's performance and maintain a delicate balance between detection and false alarm rates. In contrast to the commonly used stealthiness constraint defined using the Kullback–Leibler divergence, the \u0000<bold><inline-formula><tex-math>$varepsilon$</tex-math></inline-formula></b>\u0000-stealthiness is established based on the detector's tolerance against the false alarm rate, providing an intuitive correlation between the attacker's stealthiness and the detection rate from a probabilistic perspective. Furthermore, we obtain an upper bound on the attack performance using the Schur–Horn theorem and devise a corresponding stealth attack strategy to ensure compliance with this bound. Finally, simulations with a three-tank system model are executed to corroborate the theoretical results.","PeriodicalId":55017,"journal":{"name":"IEEE Systems Journal","volume":"18 2","pages":"1288-1295"},"PeriodicalIF":4.0,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140582897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}