{"title":"The complexity of subcube partition relates to the additive structure of the support","authors":"Norbert Hegyvári","doi":"10.1016/j.ic.2024.105170","DOIUrl":"https://doi.org/10.1016/j.ic.2024.105170","url":null,"abstract":"<div><p>The subcube partition of a Boolean function is a partition of <span><math><msup><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></mrow><mrow><mi>n</mi></mrow></msup></math></span> into the union of subcubes <span><math><msub><mrow><mo>∪</mo></mrow><mrow><mi>i</mi></mrow></msub><msub><mrow><mi>C</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>, such that the value of the function <em>f</em> is the same on each vector of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>, i.e. for every <em>i</em> and <span><math><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span>, <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>f</mi><mo>(</mo><mi>y</mi><mo>)</mo></math></span>. The complexity of it denotes by <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>S</mi><mi>C</mi><mi>P</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo></math></span> is the minimum number of subcubes in a subcube partition which computes the Boolean function <em>f</em>. We give a lower bound of the complexity of subcube partitions of Boolean function which relates the additive behaviour of the support and the influence of the function.</p></div>","PeriodicalId":54985,"journal":{"name":"Information and Computation","volume":"299 ","pages":"Article 105170"},"PeriodicalIF":1.0,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140878547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Solving modular cubic equations with Coppersmith's method","authors":"Virgile Dossou-Yovo , Abderrahmane Nitaj , Alain Togbé","doi":"10.1016/j.ic.2024.105169","DOIUrl":"10.1016/j.ic.2024.105169","url":null,"abstract":"<div><p>Several cryptosystems based on Elliptic Curve Cryptography such as KMOV and Demytko process the message as a point <span><math><mi>M</mi><mo>=</mo><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span> of an elliptic curve with an equation of the form <span><math><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>≡</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><mi>a</mi><mi>x</mi><mo>+</mo><mi>b</mi><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mi>n</mi><mo>)</mo></math></span> over a finite field when <em>n</em> is a prime number, or over a finite ring when <span><math><mi>n</mi><mo>=</mo><mi>p</mi><mi>q</mi></math></span> is an RSA modulus. Other systems use singular cubic curves such as <span><math><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>≡</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><mi>a</mi><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mi>n</mi><mo>)</mo></math></span> and <span><math><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>a</mi><mi>x</mi><mi>y</mi><mo>≡</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msup><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mi>n</mi><mo>)</mo></math></span>. In this paper, we present a method to find the small solutions of the former modular cubic equations. Our method is based on Coppersmith's technique and enables one to find the solutions <span><math><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span> when <span><math><mo>|</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><msup><mrow><mo>|</mo></mrow><mrow><mn>3</mn></mrow></msup><mo>|</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>0</mn></mrow></msub><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span> is smaller than the modulus.</p></div>","PeriodicalId":54985,"journal":{"name":"Information and Computation","volume":"298 ","pages":"Article 105169"},"PeriodicalIF":1.0,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140609867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Model checking timed recursive CTL","authors":"Florian Bruse, Martin Lange","doi":"10.1016/j.ic.2024.105168","DOIUrl":"https://doi.org/10.1016/j.ic.2024.105168","url":null,"abstract":"<div><p>We introduce Timed Recursive CTL, a merger of two extensions of the well-known branching-time logic CTL: Timed CTL is interpreted over real-time systems like timed automata; Recursive CTL introduces a powerful recursion operator which takes the expressiveness of this logic CTL well beyond that of regular properties. The result is an expressive logic for real-time properties. We show that its model checking problem is decidable over timed automata, namely 2-EXPTIME-complete.</p></div>","PeriodicalId":54985,"journal":{"name":"Information and Computation","volume":"298 ","pages":"Article 105168"},"PeriodicalIF":1.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0890540124000336/pdfft?md5=e0944002710ef9bea65dbc962149ddfc&pid=1-s2.0-S0890540124000336-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140558984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jinshan Zhang , Xiaoye Miao , Meng Xi , Tianyu Du , Jianwei Yin
{"title":"A truthful near-optimal mechanism for online linear packing-covering problem in the random order model","authors":"Jinshan Zhang , Xiaoye Miao , Meng Xi , Tianyu Du , Jianwei Yin","doi":"10.1016/j.ic.2024.105167","DOIUrl":"https://doi.org/10.1016/j.ic.2024.105167","url":null,"abstract":"<div><p>Our focus is on the online linear packing-covering problem (OLPCP). Within this domain, we present an algorithm that attains near-optimal performance based on generalized Chernoff bounds for general random variables, assuming inputs are received in a uniformly random order and under almost stringent conditions. Through VCG protocols, we are able to unveil the inaugural truthful near-optimal mechanism for OLPCP, all within the confines of nearly tight conditions.</p></div>","PeriodicalId":54985,"journal":{"name":"Information and Computation","volume":"298 ","pages":"Article 105167"},"PeriodicalIF":1.0,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140540667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Characterization of exact two-query quantum algorithms","authors":"Shaoliang Ye , Wei Yang , Liusheng Huang","doi":"10.1016/j.ic.2024.105166","DOIUrl":"https://doi.org/10.1016/j.ic.2024.105166","url":null,"abstract":"<div><p>Quantum query model is a crucial model for quantum computing, where one query to some input variable of a Boolean function <em>f</em> defined on <span><math><msup><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></mrow><mrow><mi>n</mi></mrow></msup></math></span> returns the variable value. The exact query complexity, denoted as <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>E</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo></math></span>, is defined to be the minimum number of queries required to determine the function value. An important problem in this area is to give a succinct characterization of a <em>k</em>-query exact quantum algorithm for an arbitrary <em>k</em>. To date, the cases <span><math><mi>k</mi><mo>=</mo><mn>1</mn></math></span> and <span><math><mi>k</mi><mo>=</mo><mi>n</mi></math></span> are already solved and the case <span><math><mi>k</mi><mo>=</mo><mn>2</mn></math></span> remains unknown. Our result is that there are 27 nondegenerate Boolean functions up to isomorphism with <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>E</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo></math></span> being two, among which only two functions can be solved by a 2-query classical algorithm. The input bit number <em>n</em> of the above 27 functions ranges from 2 to 6, where the case <span><math><mi>n</mi><mo>≤</mo><mn>3</mn></math></span> is already proved and the case <span><math><mi>n</mi><mo>=</mo><mn>4</mn></math></span> is already found by numerically solving semidefinite programming, which is a complete characterization of quantum query algorithm. Assuming the correctness of the numerical result for <span><math><mi>n</mi><mo>=</mo><mn>4</mn></math></span>, we prove that there are four functions in the case <span><math><mi>n</mi><mo>=</mo><mn>5</mn></math></span>, one in the case <span><math><mi>n</mi><mo>=</mo><mn>6</mn></math></span> and none in the case <span><math><mi>n</mi><mo>≥</mo><mn>7</mn></math></span>. We further show that the 25 functions for which quantum algorithm has advantage over classical algorithm contain essentially only four different structures.</p></div>","PeriodicalId":54985,"journal":{"name":"Information and Computation","volume":"298 ","pages":"Article 105166"},"PeriodicalIF":1.0,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140540666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mixed choice in session types","authors":"Kirstin Peters , Nobuko Yoshida","doi":"10.1016/j.ic.2024.105164","DOIUrl":"10.1016/j.ic.2024.105164","url":null,"abstract":"<div><p>Session types provide a flexible programming style for structuring interaction, and are used to guarantee a safe and consistent composition of distributed processes. Traditional session types include only one-directional input (external) and output (internal) guarded choices. This prevents the session-processes to explore the full expressive power of the <em>π</em>-calculus where mixed choice was proved more expressive. Recently Casal, Mordido, and Vasconcelos proposed binary session types with mixed choices (<span><math><msup><mrow><mi>CMV</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>). Surprisingly, in spite of an inclusion of unrestricted channels with mixed choice, <span><math><msup><mrow><mi>CMV</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>'s mixed choice is rather separate and not mixed. We prove this negative result using two methodologies (using either the leader election problem or a synchronisation pattern as distinguishing feature), showing that there exists no good encoding from the <em>π</em>-calculus into <span><math><msup><mrow><mi>CMV</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>, preserving distribution. We then close their open problem on the encoding from <span><math><msup><mrow><mi>CMV</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span> into <span><math><mi>CMV</mi></math></span> (without mixed choice), proving its soundness.</p></div>","PeriodicalId":54985,"journal":{"name":"Information and Computation","volume":"298 ","pages":"Article 105164"},"PeriodicalIF":1.0,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0890540124000294/pdfft?md5=9b67e36d131b28461aba20580ca397f6&pid=1-s2.0-S0890540124000294-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140323484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Finite-state relative dimension, dimensions of A. P. subsequences and a finite-state van Lambalgen's theorem","authors":"Satyadev Nandakumar, Subin Pulari, Akhil S","doi":"10.1016/j.ic.2024.105156","DOIUrl":"10.1016/j.ic.2024.105156","url":null,"abstract":"<div><p>Finite-state dimension, introduced by Dai, Lathrop, Lutz and Mayordomo quantifies the information rate in an infinite sequence as measured by finite-state automata. In this paper, we define a relative version of finite-state dimension. The finite-state relative dimension <span><math><msubsup><mrow><mi>dim</mi></mrow><mrow><mi>F</mi><mi>S</mi></mrow><mrow><mi>Y</mi></mrow></msubsup><mo>(</mo><mi>X</mi><mo>)</mo></math></span> of a sequence <em>X</em> relative to <em>Y</em> is the finite-state dimension of <em>X</em> measured using the class of finite-state gamblers with oracle access to <em>Y</em>. We show its mathematical robustness by equivalently characterizing this notion using the relative block entropy rate of <em>X</em> conditioned on <em>Y</em>.</p><p>We derive inequalities relating the dimension of a sequence to the relative dimension of its subsequences along any arithmetic progression (A. P.). These enable us to obtain a strengthening of Wall's Theorem on the normality of A. P. subsequences of a normal sequence, in terms of relative dimension. In contrast to the original theorem, this stronger version has an exact converse yielding a new characterization of normality.</p><p>We also obtain finite-state analogues of van Lambalgen's theorem on the symmetry of relative normality.</p></div>","PeriodicalId":54985,"journal":{"name":"Information and Computation","volume":"298 ","pages":"Article 105156"},"PeriodicalIF":1.0,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140056136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"r-indexing the eBWT","authors":"Christina Boucher , Davide Cenzato , Zsuzsanna Lipták , Massimiliano Rossi , Marinella Sciortino","doi":"10.1016/j.ic.2024.105155","DOIUrl":"10.1016/j.ic.2024.105155","url":null,"abstract":"<div><p>The extended Burrows-Wheeler Transform (eBWT) [Mantaci et al. TCS 2007] is a variant of the BWT, introduced for collections of strings. In this paper, we present the <em>extended r-index</em>, an analogous data structure to the <em>r</em>-index [Gagie et al. JACM 2020]. It occupies <span><math><mi>O</mi><mo>(</mo><mi>r</mi><mo>)</mo></math></span> words, with <em>r</em> the number of runs of the eBWT, and offers the same functionalities as the <em>r</em>-index. We also show how to efficiently support finding maximal exact matches (MEMs). We implemented the extended <em>r</em>-index and tested it on circular bacterial genomes and plasmids, comparing it to five state-of-the-art compressed text indexes. While our data structure maintains similar time and memory requirements for answering pattern matching queries as the original <em>r</em>-index, it is the only index in the literature that can naturally be used for both circular and linear input collections. This is an extended version of [Boucher et al., <em>r-indexing the</em> eBWT, SPIRE 2021].</p></div>","PeriodicalId":54985,"journal":{"name":"Information and Computation","volume":"298 ","pages":"Article 105155"},"PeriodicalIF":1.0,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0890540124000208/pdfft?md5=473e3c991b33dac12225d2a9ce2daad7&pid=1-s2.0-S0890540124000208-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140056199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jinjie Gao , Haibin Kan , Yuan Li , Jiahua Xu , Qichun Wang
{"title":"Monomial Boolean functions with large high-order nonlinearities","authors":"Jinjie Gao , Haibin Kan , Yuan Li , Jiahua Xu , Qichun Wang","doi":"10.1016/j.ic.2024.105152","DOIUrl":"10.1016/j.ic.2024.105152","url":null,"abstract":"<div><p>Exhibiting an explicit Boolean function with a large high-order nonlinearity is an important problem in cryptography, coding theory, and computational complexity. We prove lower bounds on the second-order, third-order, and higher order nonlinearities of some monomial Boolean functions.</p><p>We prove lower bounds on the second-order nonlinearities of functions <span><math><msub><mrow><mi>tr</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>7</mn></mrow></msup><mo>)</mo></math></span> and <span><math><msub><mrow><mi>tr</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>r</mi></mrow></msup><mo>+</mo><mn>3</mn></mrow></msup><mo>)</mo></math></span> where <span><math><mi>n</mi><mo>=</mo><mn>2</mn><mi>r</mi></math></span>. Among all monomial Boolean functions, our bounds match the best second-order nonlinearity lower bounds by Carlet [IEEE Transactions on Information Theory 54(3), 2008] and Yan and Tang [Discrete Mathematics 343(5), 2020] for odd and even <em>n</em>, respectively. We prove a lower bound on the third-order nonlinearity for functions <span><math><msub><mrow><mi>tr</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>15</mn></mrow></msup><mo>)</mo></math></span>, which is the best third-order nonlinearity lower bound. For any <em>r</em>, we prove that the <em>r</em>-th order nonlinearity of <span><math><msub><mrow><mi>tr</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>r</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> is at least <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>−</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>−</mo><mi>r</mi></mrow></msup><mo>)</mo><mi>n</mi><mo>+</mo><mfrac><mrow><mi>r</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>r</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></mfrac><mo>−</mo><mn>1</mn></mrow></msup><mo>−</mo><mi>O</mi><mo>(</mo><msup><mrow><mn>2</mn></mrow><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup><mo>)</mo></math></span>. For <span><math><mi>r</mi><mo>≪</mo><msub><mrow><mi>log</mi></mrow><mrow><mn>2</mn></mrow></msub><mo></mo><mi>n</mi></math></span>, this is the best lower bound among all explicit functions.</p></div>","PeriodicalId":54985,"journal":{"name":"Information and Computation","volume":"297 ","pages":"Article 105152"},"PeriodicalIF":1.0,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139889415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hideo Bannai, Juha Kärkkäinen, Dominik Köppl, Marcin Pia̧tkowski
{"title":"Constructing and indexing the bijective and extended Burrows–Wheeler transform","authors":"Hideo Bannai, Juha Kärkkäinen, Dominik Köppl, Marcin Pia̧tkowski","doi":"10.1016/j.ic.2024.105153","DOIUrl":"10.1016/j.ic.2024.105153","url":null,"abstract":"<div><p>The Burrows–Wheeler transform (BWT) is a permutation whose applications are prevalent in data compression and text indexing. The <em>bijective BWT</em> is a bijective variant of it that has not yet been studied for text indexing applications. We fill this gap by proposing a self-index built on the bijective BWT. The self-index applies the backward search technique of the FM-index to find a pattern <em>P</em> with <span><math><mi>O</mi><mo>(</mo><mo>|</mo><mi>P</mi><mo>|</mo><mi>lg</mi><mo></mo><mo>|</mo><mi>P</mi><mo>|</mo><mo>)</mo></math></span> backward search steps. Additionally, we propose the first linear-time construction algorithm that is based on SAIS, improving the best known result of <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mi>lg</mi><mo></mo><mi>n</mi><mo>/</mo><mi>lg</mi><mo></mo><mi>lg</mi><mo></mo><mi>n</mi><mo>)</mo></math></span> time to linear.</p></div>","PeriodicalId":54985,"journal":{"name":"Information and Computation","volume":"297 ","pages":"Article 105153"},"PeriodicalIF":1.0,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139813409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}