多时空关系的预测性挖掘

IF 0.8 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Beatrice Amico, Carlo Combi, Romeo Rizzi, Pietro Sala
{"title":"多时空关系的预测性挖掘","authors":"Beatrice Amico,&nbsp;Carlo Combi,&nbsp;Romeo Rizzi,&nbsp;Pietro Sala","doi":"10.1016/j.ic.2024.105228","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we propose a methodology for deriving a new kind of approximate temporal functional dependencies, called Approximate Predictive Functional Dependencies (APFDs), based on a three-window framework and on a multi-temporal relational model. Different features are proposed for the Observation Window (OW), where we observe predictive data, for the Waiting Window (WW), and for the Prediction Window (PW), where the predicted event occurs. We then consider the concept of approximation for such APFDs, introduce new error measures, and discuss different strategies for deriving APFDs. We discuss the quality, i.e., the informative content, of the derived AFDs by considering their entropy and information gain. Moreover, we outline the results in deriving APFDs focusing on the Acute Kidney Injury (AKI). We use real clinical data contained in the MIMIC III dataset related to patients from Intensive Care Units to show the applicability of our approach to real-world data.</div></div>","PeriodicalId":54985,"journal":{"name":"Information and Computation","volume":"301 ","pages":"Article 105228"},"PeriodicalIF":0.8000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predictive mining of multi-temporal relations\",\"authors\":\"Beatrice Amico,&nbsp;Carlo Combi,&nbsp;Romeo Rizzi,&nbsp;Pietro Sala\",\"doi\":\"10.1016/j.ic.2024.105228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we propose a methodology for deriving a new kind of approximate temporal functional dependencies, called Approximate Predictive Functional Dependencies (APFDs), based on a three-window framework and on a multi-temporal relational model. Different features are proposed for the Observation Window (OW), where we observe predictive data, for the Waiting Window (WW), and for the Prediction Window (PW), where the predicted event occurs. We then consider the concept of approximation for such APFDs, introduce new error measures, and discuss different strategies for deriving APFDs. We discuss the quality, i.e., the informative content, of the derived AFDs by considering their entropy and information gain. Moreover, we outline the results in deriving APFDs focusing on the Acute Kidney Injury (AKI). We use real clinical data contained in the MIMIC III dataset related to patients from Intensive Care Units to show the applicability of our approach to real-world data.</div></div>\",\"PeriodicalId\":54985,\"journal\":{\"name\":\"Information and Computation\",\"volume\":\"301 \",\"pages\":\"Article 105228\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information and Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0890540124000932\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890540124000932","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

本文基于三窗口框架和多时空关系模型,提出了一种推导新型近似时空函数依赖关系的方法,称为近似预测函数依赖关系(Approximate Predictive Functional Dependencies,APFDs)。我们针对观察预测数据的观察窗口(OW)、等待窗口(WW)和预测事件发生的预测窗口(PW)提出了不同的特征。然后,我们考虑了此类 APFD 的近似概念,引入了新的误差测量方法,并讨论了得出 APFD 的不同策略。通过考虑熵和信息增益,我们讨论了推导出的 AFD 的质量,即信息内容。此外,我们还概述了以急性肾损伤(AKI)为重点推导 APFD 的结果。我们使用了 MIMIC III 数据集中与重症监护病房患者相关的真实临床数据,以展示我们的方法在真实世界数据中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predictive mining of multi-temporal relations
In this paper, we propose a methodology for deriving a new kind of approximate temporal functional dependencies, called Approximate Predictive Functional Dependencies (APFDs), based on a three-window framework and on a multi-temporal relational model. Different features are proposed for the Observation Window (OW), where we observe predictive data, for the Waiting Window (WW), and for the Prediction Window (PW), where the predicted event occurs. We then consider the concept of approximation for such APFDs, introduce new error measures, and discuss different strategies for deriving APFDs. We discuss the quality, i.e., the informative content, of the derived AFDs by considering their entropy and information gain. Moreover, we outline the results in deriving APFDs focusing on the Acute Kidney Injury (AKI). We use real clinical data contained in the MIMIC III dataset related to patients from Intensive Care Units to show the applicability of our approach to real-world data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information and Computation
Information and Computation 工程技术-计算机:理论方法
CiteScore
2.30
自引率
0.00%
发文量
119
审稿时长
140 days
期刊介绍: Information and Computation welcomes original papers in all areas of theoretical computer science and computational applications of information theory. Survey articles of exceptional quality will also be considered. Particularly welcome are papers contributing new results in active theoretical areas such as -Biological computation and computational biology- Computational complexity- Computer theorem-proving- Concurrency and distributed process theory- Cryptographic theory- Data base theory- Decision problems in logic- Design and analysis of algorithms- Discrete optimization and mathematical programming- Inductive inference and learning theory- Logic & constraint programming- Program verification & model checking- Probabilistic & Quantum computation- Semantics of programming languages- Symbolic computation, lambda calculus, and rewriting systems- Types and typechecking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信