{"title":"AUB: A full-duplex MAC protocol for the efficient utilization of the idle uplink period in WLAN","authors":"Hyeongtae Ahn;Harim Lee;Young Deok Park","doi":"10.23919/JCN.2023.000043","DOIUrl":"https://doi.org/10.23919/JCN.2023.000043","url":null,"abstract":"Recently, full-duplex radio has attracted attention as a solution for wireless local area networks (WLANs) where traffic is exploding but available frequency bands are insufficient. Full-duplex radio exploits various self-interference cancellation technologies to transmit and receive signals concurrently in the same frequency band. Thus, the efficiency of the frequency band is doubled compared with that of conventional half-duplex radios. However, to effectively exploit full-duplex radio, new problems that do not exist in conventional half-duplex radio, such as full-duplex link setup, inter-node interference avoidance, and idle uplink period (IUP), must be addressed. We propose a full-duplex medium access control (MAC) protocol to effectively exploit full-duplex radio by addressing these problems. In particular, our MAC protocol uses an IUP to transmit an acknowledgment (ACK) frame and report the buffer information of nodes. Accordingly, an access point can gather the node's buffer information during the IUP and schedule the transmission of nodes without competition. In addition, because the uplink ACK frame is transmitted during the IUP, additional channel usage time for the uplink ACK frame transmission is not required. Therefore, the proposed MAC protocol improves the WLAN throughput by reducing the number of control frame transmissions and the IUP. The results of our performance analysis and simulation show that the MAC protocol achieves throughput improvements compared with those of previous studies.","PeriodicalId":54864,"journal":{"name":"Journal of Communications and Networks","volume":"25 6","pages":"750-759"},"PeriodicalIF":3.6,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10387276","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139406551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Capacity analysis of index modulation multiple access system","authors":"Raed Mesleh;Nareeman Jibreel;Abdelhamid Younis","doi":"10.23919/JCN.2023.000048","DOIUrl":"https://doi.org/10.23919/JCN.2023.000048","url":null,"abstract":"Employing cutting-edge non-orthogonal multiple access (NOMA) techniques, index modulation multiple access (IMMA)introduces an efficient methodology. By leveraging index modulation (IM), IMMA facilitates concurrent data transmission among multiple users. It enhances this process by incorporating an additional constellation diagram that conveys extra information bits per channel utilization. In this work, we conduct a comprehensive investigation. We derive the theoretical capacity of the IMMA system and analyze mutual information across receiver channel estimation scenarios—ranging from perfect to imperfect. To validate our derivations, we execute Monte Carlo simulations, affirming our theoretical results. Notably, our findings confirm that the derived theoretical capacity formula acts as an upper bound for simulated mutual information curves. Additionally, we identify conditions for achieving the derived capacity, rigorously verifying their applicability. Through compelling comparisons, we evaluate the IMMA system's performance in mutual information and capacity against sparse code multiple access (SCMA) systems. This analysis underscores the superior attributes of the IMMA system, showcasing its potential. To illuminate practical constraints, we establish a crucial bound on users effectively sharing orthogonal resources, offering deployment insights. Furthermore, we contrast IMMA systems with traditional orthogonal multiple access (OMA) counterparts, dissecting the implications of overloading. This comprehensive approach yields a holistic comprehension of the scheme's ramifications.","PeriodicalId":54864,"journal":{"name":"Journal of Communications and Networks","volume":"25 6","pages":"711-721"},"PeriodicalIF":3.6,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10387273","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139406547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Information for authors","authors":"","doi":"10.23919/JCN.2023.10387283","DOIUrl":"https://doi.org/10.23919/JCN.2023.10387283","url":null,"abstract":"","PeriodicalId":54864,"journal":{"name":"Journal of Communications and Networks","volume":"25 6","pages":"862-866"},"PeriodicalIF":3.6,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10387283","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139406550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On collaborative multi-UAV trajectory planning for data collection","authors":"Shahnila Rahim;Limei Peng;Shihyu Chang;Pin-Han Ho","doi":"10.23919/JCN.2023.000031","DOIUrl":"https://doi.org/10.23919/JCN.2023.000031","url":null,"abstract":"This paper investigates the scenario of the Internet of things (IoT) data collection via multiple unmanned aerial vehicles (UAVs), where a novel collaborative multi-agent trajectory planning and data collection (CMA-TD) algorithm is introduced for online obtaining the trajectories of the multiple UAVs without any prior knowledge of the sensor locations. We first provide two integer linear programs (ILPs) for the considered system by taking the coverage and the total power usage as the optimization targets. As a complement to the ILPs and to avoid intractable computation, the proposed CMA-TD algorithm can effectively solve the formulated problem via a deep reinforcement learning (DRL) process on a double deep Q-learning network (DDQN). Extensive simulations are conducted to verify the performance of the proposed CMA-TD algorithm and compare it with a couple of state-of-the-art counterparts in terms of the amount of served IoT nodes, energy consumption, and utilization rates.","PeriodicalId":54864,"journal":{"name":"Journal of Communications and Networks","volume":"25 6","pages":"722-733"},"PeriodicalIF":3.6,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10387274","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139406567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Joint optimization of time-slot allocation and traffic steering for large-scale deterministic networks","authors":"Wenhao Wu;Xiaoning Zhang;Jiaming Pan;Yihui Zhou","doi":"10.23919/JCN.2023.000047","DOIUrl":"https://doi.org/10.23919/JCN.2023.000047","url":null,"abstract":"Recently, time-sensitive services have expanded from traditional industrial control systems to more scenarios. Some time-sensitive applications, such as remote surgery, autonomous driving, augmented reality (AR), etc., require deterministic end-to-end delay and jitter in data transmission. deterministic network (DetNet) is proposed as a promising technology for providing deterministic service in wide area networks (WAN). DetNet guarantees deterministic end-to-end delay and jitter by specifying a certain routing path and transmission time-slots for timesensitive flows. However, how to efficiently steer time-sensitive flows while jointly allocating transmission time-slots is still an open problem. Existing flow scheduling algorithms are limited in the scenarios of local area networks (LAN), and do not consider the impact of propagation delay in large-scale networks. To this end, we study the joint optimization of time-slot allocation and traffic steering, while considering the propagation delay of WAN links. Our objective is to maximize the number of successfully deployed time-sensitive flows under the constraints of required end-to-end delay. Accordingly, we formulate the studied problem as an integer linear programming (ILP) model. Since it is proved to be an NP-hard problem, we design a heuristic algorithm named genetic-based deterministic network traffic scheduling (GDNTS). The solution with the largest number of deployed time-sensitive flows can be obtained from the evolution of chromosomes in GDNTS. Compared with the benchmark algorithms, extensive simulation results show that GDNTS improves the deployed time sensitive-flows number by 22.85% in average.","PeriodicalId":54864,"journal":{"name":"Journal of Communications and Networks","volume":"25 6","pages":"825-840"},"PeriodicalIF":3.6,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10387282","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139406633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Overview of various methods for decoding and constructing critical sets of polar codes","authors":"Ilya Timokhin;Fedor Ivanov","doi":"10.23919/JCN.2023.000049","DOIUrl":"https://doi.org/10.23919/JCN.2023.000049","url":null,"abstract":"Polar codes have gained significant attention in recent years as they offer a promising solution for reliable communication in the presence of channel noise. However, decoding these codes remains a critical challenge, particularly for practical implementations. Traditional decoding methods such as belief propagation and successive cancellation suffer from complexity and performance issues. To address these challenges, authors have researched several low-complexity decoding techniques, including bit-flipping decoding with critical set construction. Bitflipping decoding methods operate by flipping a limited number of bits in the received codeword to bring the decoder output closer to the transmitted message. The critical set construction is an essential component of these methods, which identifies the set of bits to be flipped. This paper compares various bit-flipping decoding methods with different critical set constructions, including revised critical set, subblocks-based critical set, key set and others. The performance of these methods is evaluated in terms of bit error rate, computational complexity, and an average number of operations. In summary, this paper provides a comprehensive overview of bit-flipping decoding methods with critical set construction for polar codes. The paper's findings highlight the potential of these methods to improve the performance and reliability of polar codes, making them a viable option for practical implementation in modern communication systems.","PeriodicalId":54864,"journal":{"name":"Journal of Communications and Networks","volume":"25 6","pages":"760-777"},"PeriodicalIF":3.6,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10387277","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139406656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Open access publishing agreement","authors":"","doi":"10.23919/JCN.2023.10387284","DOIUrl":"https://doi.org/10.23919/JCN.2023.10387284","url":null,"abstract":"","PeriodicalId":54864,"journal":{"name":"Journal of Communications and Networks","volume":"25 6","pages":"867-869"},"PeriodicalIF":3.6,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10387284","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139406569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Understanding the impact of packet size on the energy efficiency of LoRaWAN","authors":"Lluís Casals;Carles Gomez;Rafael Vidal","doi":"10.23919/JCN.2023.000039","DOIUrl":"https://doi.org/10.23919/JCN.2023.000039","url":null,"abstract":"LoRaWAN has become a flagship LPWAN technology, and one of the main connectivity alternatives for IoT devices. Since LoRaWAN was designed for low energy consumption, it is fundamental to understand its energy performance. In this paper, we study the impact of packet size on LoRaWAN device energy consumption per delivered data bit (EPB). By means of extensive simulations, we show that, when network performance is very high or very low, EPB decreases steadily with packet size; otherwise, EPB may show an “asymmetric U” shape as a function of packet size, with a minimum EPB value that is achieved for a medium packet size. We also provide detailed insights on the reasons that produce the observed behaviors.","PeriodicalId":54864,"journal":{"name":"Journal of Communications and Networks","volume":"25 6","pages":"814-824"},"PeriodicalIF":3.6,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10387281","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139406651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"EE-TLT: Energy-efficient routing protocol using two-level tree-based clustering in wireless sensor network","authors":"Nguyen Duy Tan;Van-Hau Nguyen","doi":"10.23919/JCN.2023.000038","DOIUrl":"https://doi.org/10.23919/JCN.2023.000038","url":null,"abstract":"When designing routing protocols for wireless sensor networks, the principal challenge is to prolong the network's lifespan by effectively using the limited battery energy of the sensor nodes. To address this issue, we propose an energy-efficient routing protocol employing a two-level tree-based clustering (called EE-TLT) approach to stabilize and efficiently use the sensor node's energy. In EE-TLT, the regional network is logically divided into clusters, with the number of nodes balanced in each cluster. Within each cluster, the nodes are again separated into polygons and the data is transmitted only via short links using a two-level routing tree, which is composed of one or more minimum spanning trees based on the Kruskal algorithm with a sub-cluster head (sub-CH) node serving as the root and a two-level tree linking sub-CHs at different polygons and the base station (BS). To determine the cluster head or relay cluster head node in each polygon or sector respectively, EE-TLT considers the energy residual and distance among candidate nodes and the BS. Furthermore, EE-TLT selects the optimal data transmission stage length in each round, significantly increasing the number of data packets that the BS receives. Our experimental results demonstrate that EE-TLT not only further balances the energy consumption among sensors but also improves the ratio of data packets accepted by BS and energy efficiency compared to the LEACH-VA, PEGCP, and STDC by approximately 25%, 15%, and 10%, respectively, in both homogeneous and heterogeneous networks. The code and the simulation results of EE-TLT may be found at https://tinyurl.com/ee-tlt-wsn.","PeriodicalId":54864,"journal":{"name":"Journal of Communications and Networks","volume":"25 6","pages":"734-749"},"PeriodicalIF":3.6,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10387275","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139406546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Juncal Uriol;Juan Felipe Mogollón;Mikel Serón;Roberto Viola;Ángel Martín;Mikel Zorrilla;Jon Montalbán
{"title":"Predictive path routing algorithm for low-latency traffic in NFV-based experimental testbed","authors":"Juncal Uriol;Juan Felipe Mogollón;Mikel Serón;Roberto Viola;Ángel Martín;Mikel Zorrilla;Jon Montalbán","doi":"10.23919/JCN.2023.000018","DOIUrl":"https://doi.org/10.23919/JCN.2023.000018","url":null,"abstract":"The growth of network traffic and the rise of new network applications having heterogeneous requirements are stressing the telecommunication infrastructure and pushing network management to undergo profound changes. Network management is becoming a core research area to push the network and its performance to the limits, as it aims at applying dynamic changes across the network nodes to fit the requirements of each specific network traffic or application. Here, solutions and frameworks based on software-defined networking (SDN) and network function virtualization (NFV) facilitate the monitorization and control of both the network infrastructure and the network services running on top of it. This article identifies and analyzes different implemented solutions to perform experiments on network management. In this context, an innovative experimental testbed is described and implemented to allow experimentation. A predictive path routing algorithm is later proposed and tested by designing experiments with specific network topologies and configurations deployed through the testbed. The algorithm exploits predictions on network latency to change the routing rules. Finally, the article identifies the open challenges and missing functions to achieve next-generation network management.","PeriodicalId":54864,"journal":{"name":"Journal of Communications and Networks","volume":"25 6","pages":"789-805"},"PeriodicalIF":3.6,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10387279","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139406555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}