Journal of Geophysics and Engineering最新文献

筛选
英文 中文
Improving full-waveform inversion based on sparse regularisation for geophysical data 基于稀疏正则化改进地球物理数据的全波形反演
IF 1.4 3区 地球科学
Journal of Geophysics and Engineering Pub Date : 2024-03-22 DOI: 10.1093/jge/gxae036
Jiahang Li, H. Mikada, J. Takekawa
{"title":"Improving full-waveform inversion based on sparse regularisation for geophysical data","authors":"Jiahang Li, H. Mikada, J. Takekawa","doi":"10.1093/jge/gxae036","DOIUrl":"https://doi.org/10.1093/jge/gxae036","url":null,"abstract":"\u0000 Full waveform inversion (FWI) is an advanced geophysical inversion technique. FWI provides images of subsurface structures with higher resolution in fields such as oil exploration and geology. The conventional algorithm minimises the misfit error by calculating the least squares of the wavefield solutions between observed data and simulated data, followed by gradient direction and model update increment. Since the gradient is calculated by forward and backward wavefields, the high-accuracy model update relies on accurate forward and backward wavefield modelling. However, the quality of wavefield solutions obtained in practical situations could be poor and does not meet the requirements of high-resolution FWI. Specifically, the low-frequency wavefield is easily affected by noise and downsampling, which influences data quality, while the high-frequency wavefield is susceptible to spatial aliasing effects that produce imaging artefacts. Therefore, we propose using an algorithm called sparse relaxation regularised regression (SR3) to optimise the wavefield solution in frequency domain FWI, which is the forward and backward wavefield obtained from the Helmholtz equation, thus improving the FWI's accuracy. The sparse relaxation regularised regression algorithm combines sparsity and regularisation, allowing the broadband FWI to reduce the effects of noise and outliers, which can provide data supplementation in the low-frequency band and anti-aliasing in the high-frequency band. Our numerical examples demonstrate the wavefield optimisation effect of the sparse relaxation regularised regression-based algorithm in various cases. The improved algorithm's accuracy and stability are verified compared to the Tikhonov regularisation algorithm.","PeriodicalId":54820,"journal":{"name":"Journal of Geophysics and Engineering","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140214674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Controllable image expansion of rock castings based on deep learning 基于深度学习的岩石铸件可控图像扩展
IF 1.4 3区 地球科学
Journal of Geophysics and Engineering Pub Date : 2024-03-21 DOI: 10.1093/jge/gxae033
Lixin Tian, Wenxu Peng, Wenming Han, Shixin Zhang, Danping Cao
{"title":"Controllable image expansion of rock castings based on deep learning","authors":"Lixin Tian, Wenxu Peng, Wenming Han, Shixin Zhang, Danping Cao","doi":"10.1093/jge/gxae033","DOIUrl":"https://doi.org/10.1093/jge/gxae033","url":null,"abstract":"\u0000 Digital rock physics (DRP) offers an effective method of deriving elastic parameters from digital rock images, but its practical application is always limited to limited datasets. Recently, deep learning techniques have presented a promising avenue for generating more extensive and cost-effective samples. However, generating controllable samples according to user definition remains very difficult due to high dependence on sufficient datasets. To resolve this problem, a new network was proposed based on the UNet framework through image translation (UNet-IT) to expand rock castings by given porosity in relatively fewer datasets. Practical tests on carbonate rock images demonstrate that the proposed method can generate samples tailored to specific porosity requirements, which achieved a minimum porosity relative error of less than 1%. Compared with the unextended samples, the generated ones have completely different pore structures in terms of two-point probability, two-point cluster and lineal path functions. Furthermore, the elastic parameters of the generated images obtained through the finite element method (FEM) and practical logging data matched well, with an average relative error of approximately 9%. This indicates that the generated samples can be used as effective data to estimate fine rock physics templates and then improve inversion accuracy.","PeriodicalId":54820,"journal":{"name":"Journal of Geophysics and Engineering","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140221289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental investigation of thawing behavior of saline soils using resistivity method 利用电阻率法对盐碱土的解冻行为进行实验研究
IF 1.4 3区 地球科学
Journal of Geophysics and Engineering Pub Date : 2024-03-21 DOI: 10.1093/jge/gxae037
Cihai Chen, Zhilong Yang, Yaping Deng, Haichun Ma, Jiazhong Qian
{"title":"Experimental investigation of thawing behavior of saline soils using resistivity method","authors":"Cihai Chen, Zhilong Yang, Yaping Deng, Haichun Ma, Jiazhong Qian","doi":"10.1093/jge/gxae037","DOIUrl":"https://doi.org/10.1093/jge/gxae037","url":null,"abstract":"\u0000 Electrical resistivity method has been widely used to study permafrost and to monitor the process of freezing-thawing. However, a thorough understanding of the mechanism of electrical response during thawing is missing. In this study, we investigated the thawing behavior of saline soils in the temperature range ∼-10 to 15 °C considering the effects of soil type and salinity. A total of nine experiments were performed with three soil types (silica sand, sandy soil and silt) and three salinities (0.01 S/m, 0.1 S/m and 1 S/m). The results show that resistivity variations with temperature can be divided into three stages. In Stage I, tortuosity and unfrozen water content play major roles in the decrease of resistivity. In Stage Ⅱ, which is an isothermal or near isothermal process, resistivity still decreases slightly due to the thawing of residual ice and pore water movement. In Stage III, ionic mobility plays an important impact on decreasing resistivity. In addition, the isothermal process is found to only occur in silica sand which can be explained by latent heat effect. Exponential and linear models linking temperature with resistivity are used to fit the experimental data in Stage I and Stage III. The fitting parameter in different models shows great correlation with soil type and salinity. Furthermore, unfrozen water content below 0 °C is also estimated and uncertainty of estimation is analyzed.","PeriodicalId":54820,"journal":{"name":"Journal of Geophysics and Engineering","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140222677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geophysical Characterization of Lamproite Fields in the Dharwar Craton Using VLF-EM and Advanced Filtering Techniques: Insights from Conductivity Analysis and Analytical Signal Mapping 使用 VLF-EM 和高级滤波技术对 Dharwar 克拉顿的褐铁矿场进行地球物理特征描述:电导率分析和分析信号绘图的启示
IF 1.4 3区 地球科学
Journal of Geophysics and Engineering Pub Date : 2024-03-21 DOI: 10.1093/jge/gxae035
Ravi Jonnalagadda, R. R. Mathur, A. Sridhar
{"title":"Geophysical Characterization of Lamproite Fields in the Dharwar Craton Using VLF-EM and Advanced Filtering Techniques: Insights from Conductivity Analysis and Analytical Signal Mapping","authors":"Ravi Jonnalagadda, R. R. Mathur, A. Sridhar","doi":"10.1093/jge/gxae035","DOIUrl":"https://doi.org/10.1093/jge/gxae035","url":null,"abstract":"\u0000 This study presents a geophysical investigation of the lamproite fields located in the Dharwar craton, aiming to map conductivity variations using contemporary techniques. The study employs very low-frequency electromagnetic (VLF-EM) methods, applying Hilbert transformations and first-order vertical derivatives to the Fraser and Karous-Hjelt filtered contoured of VLF-EM data. The Peninsular Gneissic Complex (PGC) granitic rocks in the study area experienced tectonic forces, resulting in fractures along specific WNW-ESE to NW-SE trends. Within these crustal weak zones, these lamproites are emplaced. The lamproite pipes are volcanic rocks. Hence, the top portions are weathered and tend to conductive, and the conductivity tend to decreases with the depth. The volumetric size of lamproites ranges from centimetres to hundreds of meters, unlike kimberlites, which are larger. Hence, the exploration of lamproites poses challenges. The contours of in-phase and quadrature components were used to identify the cluster of lamproite zones within the study area. From this study, the boundaries of the lamproite pipes were clearly identified using real component's analytical and first-order vertical derivative signal contour maps. The VLF-EM pseudo depth current density section was used to identify anomalous lamproite, pipes, and their subsurface extensions, along with the surrounding formations. The current investigation findings specify that the lamproites exhibit weak conductive. These results provide valuable insights for exploration efforts within the Dharwar craton, and can aid in the identification and mapping of the lamproite fields.","PeriodicalId":54820,"journal":{"name":"Journal of Geophysics and Engineering","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140221255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrated characterization of deep karsted carbonates in Tahe Oilfield, Tarim Basin 塔里木盆地塔河油田深部岩溶碳酸盐岩的综合表征
IF 1.4 3区 地球科学
Journal of Geophysics and Engineering Pub Date : 2024-03-20 DOI: 10.1093/jge/gxae031
B. Lv, Xuehua Chen, Cuncai Qie, Wei Jiang
{"title":"Integrated characterization of deep karsted carbonates in Tahe Oilfield, Tarim Basin","authors":"B. Lv, Xuehua Chen, Cuncai Qie, Wei Jiang","doi":"10.1093/jge/gxae031","DOIUrl":"https://doi.org/10.1093/jge/gxae031","url":null,"abstract":"\u0000 As the transport channels of oil and gas, fracture networks can greatly improve the reservoir seepage, which is of great significance to the hydraulic fracturing and hydrocarbon deposit exploitation in petroleum science and engineering. In this paper, our target reservoirs are deep karsted carbonates at depth of more than 6000 m and with highly heterogeneous, leading to complex seismic responses with weak energy and low resolution. Therefore, it is challenging to predict the spatial distribution of carbonate fracture-cavern reservoir and to characterize its delicate structure. We present a characterization method for an excellent fracture description by integrating several attribute results on 3D seismic field data. Firstly, we use a noise elimination method to remove the noise interference in seismic data without damaging the fault structure characteristics. Next, we propose a novel spatially windowed 2D Hilbert transform-based operator to perform volumetric edge detection on 3D seismic field data. Then, the volumetric edge results are co-rendered with other seismic geometric attributes to generate multi-attribute fusion results for a comprehensive prediction that can excellently delineate geologic anomalies at different scales in deep carbonates. The results indicate that integrating multiple scale attributes can obtain more rich geological discontinuity and reveal more subtle fractures than using single attribute. The multi-attribute fusion results can effectively delineate some small-medium-sized faults, and they provide practical support for the exploration and production of Tahe carbonate fracture-cavern reservoirs.","PeriodicalId":54820,"journal":{"name":"Journal of Geophysics and Engineering","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140226283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
OBC shallow water de-multiple based on the principle of Fresnel diffraction 基于菲涅尔衍射原理的 OBC 浅水去倍增器
IF 1.4 3区 地球科学
Journal of Geophysics and Engineering Pub Date : 2024-03-15 DOI: 10.1093/jge/gxae034
Qiang Xu
{"title":"OBC shallow water de-multiple based on the principle of Fresnel diffraction","authors":"Qiang Xu","doi":"10.1093/jge/gxae034","DOIUrl":"https://doi.org/10.1093/jge/gxae034","url":null,"abstract":"\u0000 In shallow water ocean bottom cable (OBC) seismic data, the ineffectiveness of conventional surface-related multiple elimination(SRME) methods due to poor seabed records is addressed. This research utilizes the seismic wavefield received by multiple cables from a single shot gather to predict shallow water multiple models for that shot gather. Initially, the seismic data within a finite aperture around a seismic trace in the time domain shot gather is treated as the known seismic wavefield. This seismic wavefield is then extrapolated along the water layer to this seismic trace, following the Fresnel diffraction principle. The extrapolated data becomes the shallow water multiple model for this seismic trace. This process is repeated for each trace in the shot gather to obtain the shallow water multiple model of the entire shot gather. Forward modeling tests have shown that smaller data apertures can effectively avoid the impact of spatial aliasing on multiple model prediction. To address the overlap of primary waves and shallow water multiples in deep seismic data, which have lower dominant frequencies, the multiple model data is used as a known seismic wavefield and extrapolated along the water layer again. This produces second-order and higher-order multiple models. Applying this model to suppress multiple waves can minimize primary waves loss. This entirely data-driven approach necessitates solely water depth information, imposing no additional conditions. Both forward modeling and real seismic data testing validate the efficacy of this method in shallow water.","PeriodicalId":54820,"journal":{"name":"Journal of Geophysics and Engineering","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140239990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quasi-2D inversion of surface large fixed-loop transient electromagnetic sounding data 地表大型固定环路瞬变电磁探测数据的准二维反演
IF 1.4 3区 地球科学
Journal of Geophysics and Engineering Pub Date : 2024-03-11 DOI: 10.1093/jge/gxae013
Feng-Ping Li, Jian-Hua Yue, Hai-Yan Yang, Yun Wu, Zhi-Xin Liu, Zhi-Hai Jiang
{"title":"Quasi-2D inversion of surface large fixed-loop transient electromagnetic sounding data","authors":"Feng-Ping Li, Jian-Hua Yue, Hai-Yan Yang, Yun Wu, Zhi-Xin Liu, Zhi-Hai Jiang","doi":"10.1093/jge/gxae013","DOIUrl":"https://doi.org/10.1093/jge/gxae013","url":null,"abstract":"In many cases, 1D inversion is still an important step in transient electromagnetic data processing. Potential issues may arise in the calculation of apparent resistivity using induced electromotive force (EMF) due to overshoot and the presence of multi-valued functions. Obtaining reliable and consistent inversion results using a uniform half-space as the initial model is challenging, especially when aiming for efficient inversion. Focusing on these problems, we use the land-based transient electromagnetic (TEM) sounding data, which was acquired by using a large fixed-loop transmitter, and adopt a quasi-2D inversion scheme to generate improved images of the subsurface resistivity structure. First, we have considered directly using magnetic field data or converting induced EMF into magnetic field, and then calculating the apparent resistivity over the whole zone. Next, a resistivity profile that varies with depth is obtained through fast smoke ring imaging. This profile serves as the initial model for the subsequent optimal inversion. The inversion scheme uses a nonlinear least-squares method, incorporating lateral and vertical constraints, to produce a quasi-2D subsurface image. The potentiality of the proposed methodology has been exemplified through the interpretation of synthetic data derived from a 3D intricate resistivity model, as well as field data obtained from a TEM survey conducted in a coalmine field. In both cases, the inversion process yields quasi-2D subsurface images that exhibit a reasonable level of accuracy. These images appear to be less moulded by 3D effects and demonstrate a satisfactory level of agreement with the known target area.","PeriodicalId":54820,"journal":{"name":"Journal of Geophysics and Engineering","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140108087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Five-dimensional facies-driven seismic inversion for igneous reservoirs based on rock physics modelling 基于岩石物理建模的火成岩储层五维面层驱动地震反演
IF 1.4 3区 地球科学
Journal of Geophysics and Engineering Pub Date : 2024-03-05 DOI: 10.1093/jge/gxae025
Wen Gu, Xingyao Yin, Furong Wu, Ying Luo, Hong Liang, Song pei, Yaming Yang
{"title":"Five-dimensional facies-driven seismic inversion for igneous reservoirs based on rock physics modelling","authors":"Wen Gu, Xingyao Yin, Furong Wu, Ying Luo, Hong Liang, Song pei, Yaming Yang","doi":"10.1093/jge/gxae025","DOIUrl":"https://doi.org/10.1093/jge/gxae025","url":null,"abstract":"\u0000 Igneous reservoir has become an important exploration target for increasing reserves and production of oil and gas in Junggar Basin. However, the igneous reservoir exploration is restricted because the seismic exploration of high-quality igneous reservoir is difficult and the anisotropy induced by high angle fractures cannot be neglected. To implement the characterization of igneous reservoir, we first study the correlation between anisotropy parameters and physical properties of igneous rock, and we propose a five-dimensional facies-driven inversion method based on rock physics, which means we employ 3D seismic data at different incidence angles and azimuths to implement the estimation of hydrocarbon reservoir constrained by the igneous rock facies. We also present an anisotropic igneous rock physics model, in which micro petrophysical characteristics, strong heterogeneity of skeleton minerals, pore structures are considered. Since a reasonable initial model is important for seismic inversion, we propose a facies-driven modeling seismic inversion method, in which we use facies obtained based on the difference between rock composition, reservoir physical parameters and elastic parameters of different lithofacies igneous rocks to constrain the seismic inversion. Finally, we present a step seismic inversion method of employing seismic data to estimate multi-parameters of HTI media. Therefore, the comprehensive processes of rock-physics modelling, inversion model establishment, and reservoir prediction of high-quality igneous rocks are proposed in this study, which demonstrates effective application for igneous reservoirs in China.","PeriodicalId":54820,"journal":{"name":"Journal of Geophysics and Engineering","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140263329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Finite difference frequency domain method with QR-decomposition-based complex-valued adaptive coefficients for 3D diffusive viscous wave modelling 基于 QR 分解的复值自适应系数的有限差分频域法,用于三维扩散粘性波建模
IF 1.4 3区 地球科学
Journal of Geophysics and Engineering Pub Date : 2024-03-04 DOI: 10.1093/jge/gxae026
Wenhao Xu, Jing Ba, Shaoru Wang, Haixia Zhao, Chunfang Wu, Jianxiong Cao, Xu Liu
{"title":"Finite difference frequency domain method with QR-decomposition-based complex-valued adaptive coefficients for 3D diffusive viscous wave modelling","authors":"Wenhao Xu, Jing Ba, Shaoru Wang, Haixia Zhao, Chunfang Wu, Jianxiong Cao, Xu Liu","doi":"10.1093/jge/gxae026","DOIUrl":"https://doi.org/10.1093/jge/gxae026","url":null,"abstract":"\u0000 The diffusive viscous (DV) model is a useful tool for interpreting low-frequency seismic attenuation and the influence of fluid saturation on frequency-dependent reflections. Among present methods for the numerical solution of corresponding DV wave equation, the finite-difference frequency-domain (FDFD) method with complex-valued adaptive coefficients (CVAC) has the advantage of efficiently suppressing both numerical dispersion and numerical attenuation. In this research, the FDFD method with CVAC is first generalized to 3D DV equation. In addition, the current calculation of CVAC involves the numerical integration of propagation angles, conjugate gradient (CG) iterative optimization and the sequential selection of initial values, which is difficult and inefficient for implementation. An improved method is developed for calculating CVAC, where a complex-valued least-squares problem is constructed by substituting the 3D complex-valued plane-wave solutions into the FDFD scheme. The QR decomposition method is utilized to efficiently solve the least-squares problem. Numerical dispersion and attenuation analyses reveal that the FDFD method with CVAC requires about 2.5 spatial points in a wavelength within a dispersion deviation of 1% and an attenuation deviation of 10% for 3D DV equation. An analytic solution for 3D DV wave equation in homogeneous media is proposed to verify the effectiveness of the proposed method. And numerical examples demonstrate that the FDFD method with CVAC can obtain accurate wavefield modelling results for 3D DV models with a limited number of spatial points in a wavelength, and the FDFD method with QR-based CVAC requires less computational time than the FDFD method with CG-based CVAC.","PeriodicalId":54820,"journal":{"name":"Journal of Geophysics and Engineering","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140266791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A convolutional neural network for Creating Near Surface 2D Velocity Images from GPR Antenna Measurements 利用 GPR 天线测量创建近表面二维速度图像的卷积神经网络
IF 1.4 3区 地球科学
Journal of Geophysics and Engineering Pub Date : 2024-02-23 DOI: 10.1093/jge/gxae023
Ibrar Iqbal, Bin Xiong, Shanxi Peng, Huanghua Wang
{"title":"A convolutional neural network for Creating Near Surface 2D Velocity Images from GPR Antenna Measurements","authors":"Ibrar Iqbal, Bin Xiong, Shanxi Peng, Huanghua Wang","doi":"10.1093/jge/gxae023","DOIUrl":"https://doi.org/10.1093/jge/gxae023","url":null,"abstract":"\u0000 In this research, our focus lies in exploring the effectiveness of a frequency-velocity convolutional neural network (CNN) in the efficient and non-intrusive acquisition of 2D wave velocity visuals of near-surface geological substances, accomplished through the analysis of data from ground penetrating radar (GPR). In order to learn complex correlations between antenna readings and subsurface velocities, the proposed CNN model makes use of the spatial features present in the GPR data. By employing a network architecture capable of accurately detecting both local and global patterns within the data, it becomes feasible to efficiently extract valuable velocity information from ground penetrating radar (GPR) readings. The CNN model is trained and validated using a substantial dataset consisting of GPR readings along with corresponding ground truth velocity images. Diverse subsurface settings, encompassing different soil types and geological characteristics, are employed to gather the GPR measurements. In the supervised learning approach employed to train the CNN model, the GPR measurements serve as input, while the associated ground truth velocity images are utilized as target outputs. The model is trained using backpropagation and optimized using a suitable loss function to reduce the difference between the predicted velocity images and the actual images. The experimental results demonstrate the effectiveness of the proposed CNN method in accurately deriving 2D velocity images of near-surface materials from GPR antenna observations. Compared to traditional techniques, the CNN model exhibits superior velocity calculation precision and achieves high levels of accuracy. Moreover, when applied to unseen GPR data, the trained model exhibits promising generalization abilities, highlighting its potential for practical subsurface imaging applications.","PeriodicalId":54820,"journal":{"name":"Journal of Geophysics and Engineering","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140437168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信