{"title":"一种利用r - cycle gan网络消除弹性波模型数值色散的新方法","authors":"Wanqiu Zheng, Jian Wang, Xiaohong Meng","doi":"10.1093/jge/gxad074","DOIUrl":null,"url":null,"abstract":"Abstract The finite difference forward modeling has been widely used in geophysics exploration and petroleum fields. Because of its high efficiency and easy application for graphical processing units, it has been widely concerned by industry and academia. However, owing to many factors, the problem of numerical dispersion has been an important factor hindering this method. To overcome the numerical dispersion, this paper proposes a method for removing numerical dispersion using deep learning. Unlike the conventional optimized algorithms target to optimize the finite difference coefficients, our strategy is based on big data training to eliminate the dispersion data after seismic data modeling. We design a neural network architecture based on cycle-consistent generative adversarial networks (Cycle-GANs) and residual learning for elastic wave propagation. Under the premise of not significantly increasing the calculation time, we can obtain higher calculation accuracy. Compared with the high-order finite difference algorithm, the calculation time is the advantage of our proposed deep learning method. Tests prove the efficiency and stability of our proposed algorithm.","PeriodicalId":54820,"journal":{"name":"Journal of Geophysics and Engineering","volume":"32 1","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new approach to remove the numerical dispersion in elastic wave modeling using R-Cycle-GAN networks\",\"authors\":\"Wanqiu Zheng, Jian Wang, Xiaohong Meng\",\"doi\":\"10.1093/jge/gxad074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The finite difference forward modeling has been widely used in geophysics exploration and petroleum fields. Because of its high efficiency and easy application for graphical processing units, it has been widely concerned by industry and academia. However, owing to many factors, the problem of numerical dispersion has been an important factor hindering this method. To overcome the numerical dispersion, this paper proposes a method for removing numerical dispersion using deep learning. Unlike the conventional optimized algorithms target to optimize the finite difference coefficients, our strategy is based on big data training to eliminate the dispersion data after seismic data modeling. We design a neural network architecture based on cycle-consistent generative adversarial networks (Cycle-GANs) and residual learning for elastic wave propagation. Under the premise of not significantly increasing the calculation time, we can obtain higher calculation accuracy. Compared with the high-order finite difference algorithm, the calculation time is the advantage of our proposed deep learning method. Tests prove the efficiency and stability of our proposed algorithm.\",\"PeriodicalId\":54820,\"journal\":{\"name\":\"Journal of Geophysics and Engineering\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysics and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/jge/gxad074\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysics and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jge/gxad074","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
A new approach to remove the numerical dispersion in elastic wave modeling using R-Cycle-GAN networks
Abstract The finite difference forward modeling has been widely used in geophysics exploration and petroleum fields. Because of its high efficiency and easy application for graphical processing units, it has been widely concerned by industry and academia. However, owing to many factors, the problem of numerical dispersion has been an important factor hindering this method. To overcome the numerical dispersion, this paper proposes a method for removing numerical dispersion using deep learning. Unlike the conventional optimized algorithms target to optimize the finite difference coefficients, our strategy is based on big data training to eliminate the dispersion data after seismic data modeling. We design a neural network architecture based on cycle-consistent generative adversarial networks (Cycle-GANs) and residual learning for elastic wave propagation. Under the premise of not significantly increasing the calculation time, we can obtain higher calculation accuracy. Compared with the high-order finite difference algorithm, the calculation time is the advantage of our proposed deep learning method. Tests prove the efficiency and stability of our proposed algorithm.
期刊介绍:
Journal of Geophysics and Engineering aims to promote research and developments in geophysics and related areas of engineering. It has a predominantly applied science and engineering focus, but solicits and accepts high-quality contributions in all earth-physics disciplines, including geodynamics, natural and controlled-source seismology, oil, gas and mineral exploration, petrophysics and reservoir geophysics. The journal covers those aspects of engineering that are closely related to geophysics, or on the targets and problems that geophysics addresses. Typically, this is engineering focused on the subsurface, particularly petroleum engineering, rock mechanics, geophysical software engineering, drilling technology, remote sensing, instrumentation and sensor design.