Krzysztof M Kozak, Merly Escalona, Noravit Chumchim, Colin Fairbairn, Mohan P A Marimuthu, Oanh Nguyen, Ruta Sahasrabudhe, William Seligmann, Chris Conroy, James L Patton, Rauri C K Bowie, Michael W Nachman
{"title":"A highly contiguous genome assembly for the pocket mouse Perognathus longimembris longimembris.","authors":"Krzysztof M Kozak, Merly Escalona, Noravit Chumchim, Colin Fairbairn, Mohan P A Marimuthu, Oanh Nguyen, Ruta Sahasrabudhe, William Seligmann, Chris Conroy, James L Patton, Rauri C K Bowie, Michael W Nachman","doi":"10.1093/jhered/esad060","DOIUrl":"10.1093/jhered/esad060","url":null,"abstract":"<p><p>The little pocket mouse, Perognathus longimembris, and its nine congeners are small heteromyid rodents found in arid and seasonally arid regions of Western North America. The genus is characterized by behavioral and physiological adaptations to dry and often harsh environments, including nocturnality, seasonal torpor, food caching, enhanced osmoregulation, and a well-developed sense of hearing. Here we present a genome assembly of Perognathus longimembris longimembris generated from PacBio HiFi long read and Omni-C chromatin-proximity sequencing as part of the California Conservation Genomics Project. The assembly has a length of 2.35 Gb, contig N50 of 11.6 Mb, scaffold N50 of 73.2 Mb, and includes 93.8% of the BUSCO Glires genes. Interspersed repetitive elements constitute 41.2% of the genome. A comparison with the highly endangered Pacific pocket mouse, P. l. pacificus, reveals broad synteny. These new resources will enable studies of local adaptation, genetic diversity, and conservation of threatened taxa.</p>","PeriodicalId":54811,"journal":{"name":"Journal of Heredity","volume":" ","pages":"130-138"},"PeriodicalIF":3.0,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10838119/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41174001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Philip S Ward, Elizabeth I Cash, Kailey Ferger, Merly Escalona, Ruta Sahasrabudhe, Courtney Miller, Erin Toffelmier, Colin Fairbairn, William Seligmann, H Bradley Shaffer, Neil D Tsutsui
{"title":"Reference genome of the bicolored carpenter ant, Camponotus vicinus.","authors":"Philip S Ward, Elizabeth I Cash, Kailey Ferger, Merly Escalona, Ruta Sahasrabudhe, Courtney Miller, Erin Toffelmier, Colin Fairbairn, William Seligmann, H Bradley Shaffer, Neil D Tsutsui","doi":"10.1093/jhered/esad055","DOIUrl":"10.1093/jhered/esad055","url":null,"abstract":"<p><p>Carpenter ants in the genus Camponotus are large, conspicuous ants that are abundant and ecologically influential in many terrestrial ecosystems. The bicolored carpenter ant, Camponotus vicinus Mayr, is distributed across a wide range of elevations and latitudes in western North America, where it is a prominent scavenger and predator. Here, we present a high-quality genome assembly of C. vicinus from a sample collected in Sonoma County, California, near the type locality of the species. This genome assembly consists of 38 scaffolds spanning 302.74 Mb, with contig N50 of 15.9 Mb, scaffold N50 of 19.9 Mb, and BUSCO completeness of 99.2%. This genome sequence will be a valuable resource for exploring the evolutionary ecology of C. vicinus and carpenter ants generally. It also provides an important tool for clarifying cryptic diversity within the C. vicinus species complex, a genetically diverse set of populations, some of which are quite localized and of conservation interest.</p>","PeriodicalId":54811,"journal":{"name":"Journal of Heredity","volume":" ","pages":"120-129"},"PeriodicalIF":3.1,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10838126/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41162018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Terrence Sylvester, Richard Adams, Wayne B Hunter, Xuankun Li, Bert Rivera-Marchand, Rongrong Shen, Na Ra Shin, Duane D McKenna
{"title":"The genome of the invasive and broadly polyphagous Diaprepes root weevil, Diaprepes abbreviatus (Coleoptera), reveals an arsenal of putative polysaccharide-degrading enzymes.","authors":"Terrence Sylvester, Richard Adams, Wayne B Hunter, Xuankun Li, Bert Rivera-Marchand, Rongrong Shen, Na Ra Shin, Duane D McKenna","doi":"10.1093/jhered/esad064","DOIUrl":"10.1093/jhered/esad064","url":null,"abstract":"<p><p>The Diaprepes root weevil (DRW), Diaprepes abbreviatus, is a broadly polyphagous invasive pest of agriculture in the southern United States and the Caribbean. Its genome was sequenced, assembled, and annotated to study genomic correlates of specialized plant-feeding and invasiveness and to facilitate the development of new methods for DRW control. The 1.69 Gb D. abbreviatus genome assembly was distributed across 653 contigs, with an N50 of 7.8 Mb and the largest contig of 62 Mb. Most of the genome was comprised of repetitive sequences, with 66.17% in transposable elements, 5.75% in macrosatellites, and 2.06% in microsatellites. Most expected orthologous genes were present and fully assembled, with 99.5% of BUSCO genes present and 1.5% duplicated. One hundred and nine contigs (27.19 Mb) were identified as putative fragments of the X and Y sex chromosomes, and homology assessment with other beetle X chromosomes indicated a possible sex chromosome turnover event. Genome annotation identified 18,412 genes, including 43 putative horizontally transferred (HT) loci. Notably, 258 genes were identified from gene families known to encode plant cell wall degrading enzymes and invertases, including carbohydrate esterases, polysaccharide lyases, and glycoside hydrolases (GH). GH genes were unusually numerous, with 239 putative genes representing 19 GH families. Interestingly, several other beetle species with large numbers of GH genes are (like D. abbreviatus) successful invasive pests of agriculture or forestry.</p>","PeriodicalId":54811,"journal":{"name":"Journal of Heredity","volume":" ","pages":"94-102"},"PeriodicalIF":3.1,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50163816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joseph N Curti, Devaughn Fraser, Merly Escalona, Colin W Fairbairn, Samuel Sacco, Ruta Sahasrabudhe, Oanh Nguyen, William Seligmann, Peter H Sudmant, Erin Toffelmier, Juan Manuel Vazquez, Robert Wayne, H Bradley Shaffer, Michael R Buchalski
{"title":"A genome assembly of the Yuma myotis bat, Myotis yumanensis.","authors":"Joseph N Curti, Devaughn Fraser, Merly Escalona, Colin W Fairbairn, Samuel Sacco, Ruta Sahasrabudhe, Oanh Nguyen, William Seligmann, Peter H Sudmant, Erin Toffelmier, Juan Manuel Vazquez, Robert Wayne, H Bradley Shaffer, Michael R Buchalski","doi":"10.1093/jhered/esad053","DOIUrl":"10.1093/jhered/esad053","url":null,"abstract":"<p><p>The Yuma myotis bat (Myotis yumanensis) is a small vespertilionid bat and one of 52 species of new world Myotis bats in the subgenus Pizonyx. While M. yumanensis populations currently appear relatively stable, it is one of 12 bat species known or suspected to be susceptible to white-nose syndrome, the fungal disease causing declines in bat populations across North America. Only two of these 12 species have genome resources available, which limits the ability of resource managers to use genomic techniques to track the responses of bat populations to white-nose syndrome generally. Here we present the first de novo genome assembly for Yuma myotis, generated as a part of the California Conservation Genomics Project. The M. yumanensis genome was generated using a combination of PacBio HiFi long reads and Omni-C chromatin-proximity sequencing technology. This high-quality genome is one of the most complete bat assemblies available, with a contig N50 of 28.03 Mb, scaffold N50 of 99.14 Mb, and BUSCO completeness score of 93.7%. The Yuma myotis genome provides a high-quality resource that will aid in comparative genomic and evolutionary studies, as well as inform conservation management related to white-nose syndrome.</p>","PeriodicalId":54811,"journal":{"name":"Journal of Heredity","volume":" ","pages":"139-148"},"PeriodicalIF":3.0,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10838121/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10242268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
James M Alfieri, Reina Hingoranee, Giridhar N Athrey, Heath Blackmon
{"title":"Domestication is associated with increased interspecific hybrid compatibility in landfowl (order: Galliformes).","authors":"James M Alfieri, Reina Hingoranee, Giridhar N Athrey, Heath Blackmon","doi":"10.1093/jhered/esad059","DOIUrl":"10.1093/jhered/esad059","url":null,"abstract":"<p><p>Some species are able to hybridize despite being exceptionally diverged. The causes of this variation in accumulation of reproductive isolation remain poorly understood, and domestication as an impetus or hindrance to reproductive isolation remains to be characterized. In this study, we investigated the role of divergence time, domestication, and mismatches in morphology, habitat, and clutch size among hybridizing species on reproductive isolation in the bird order Galliformes. We compiled and analyzed hybridization occurrences from literature and recorded measures of postzygotic reproductive isolation. We used a text-mining approach leveraging a historical aviculture magazine to quantify the degree of domestication across species. We obtained divergence time, morphology, habitat, and clutch size data from open sources. We found 123 species pairs (involving 77 species) with known offspring fertility (sterile, only males fertile, or both sexes fertile). We found that divergence time and clutch size were significant predictors of reproductive isolation (McFadden's Pseudo-R2 = 0.59), but not habitat or morphological mismatch. Perhaps most interesting, we found a significant relationship between domestication and reproductive compatibility after correcting for phylogeny, removing extreme values, and addressing potential biases (F1,74 = 5.43, R2 = 0.06, P-value = 0.02). We speculate that the genetic architecture and disruption in selective reproductive regimes associated with domestication may impact reproductive isolation, causing domesticated species to be more reproductively labile.</p>","PeriodicalId":54811,"journal":{"name":"Journal of Heredity","volume":" ","pages":"1-10"},"PeriodicalIF":3.1,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10838130/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41162017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Veronika N Laine, Arto T Pulliainen, Thomas M Lilley
{"title":"Reference genome for the Northern bat (Eptesicus nilssonii), a most northern bat species.","authors":"Veronika N Laine, Arto T Pulliainen, Thomas M Lilley","doi":"10.1093/jhered/esad056","DOIUrl":"10.1093/jhered/esad056","url":null,"abstract":"<p><p>The northern bat (Eptesicus nilssonii) is the most northern bat species in the world. Its distribution covers whole Eurasia, and the species is thus well adapted to different habitat types. However, recent population declines have been reported and rapid conservation efforts are needed. Here we present a high-quality de novo genome assembly of a female northern bat from Finland (BLF_Eptnil_asm_v1.0). The assembly was generated using a combination of Pacbio and Omni-C technologies. The primary assembly comprises 726 scaffolds spanning 2.0 Gb, represented by a scaffold N50 of 102 Mb, a contig N50 of 66.2 Mb, and a BUSCO completeness score of 93.73%. Annotation of the assembly identified 20,250 genes. This genome will be an important resource for the conservation and evolutionary genomic studies especially in understanding how rapid environmental changes affect northern species.</p>","PeriodicalId":54811,"journal":{"name":"Journal of Heredity","volume":" ","pages":"149-154"},"PeriodicalIF":3.1,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10838120/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41177487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Geneviève Blanchet, M Renee Bellinger, Anna M Kearns, Nandadevi Cortes-Rodriguez, Bryce Masuda, Michael G Campana, Christian Rutz, Robert C Fleischer, Jolene T Sutton
{"title":"Reduction of genetic diversity in 'Alalā (Hawaiian crow; Corvus hawaiiensis) between the late 1800s and the late 1900s.","authors":"Geneviève Blanchet, M Renee Bellinger, Anna M Kearns, Nandadevi Cortes-Rodriguez, Bryce Masuda, Michael G Campana, Christian Rutz, Robert C Fleischer, Jolene T Sutton","doi":"10.1093/jhered/esad063","DOIUrl":"10.1093/jhered/esad063","url":null,"abstract":"<p><p>Genetic and genomic data are increasingly used to aid conservation management of endangered species by providing insights into evolutionary histories, factors associated with extinction risks, and potential for future adaptation. For the 'Alalā, or Hawaiian crow (Corvus hawaiiensis), genetic concerns include negative correlations between inbreeding and hatching success. However, it is unclear if low genetic diversity and inbreeding depression are consequences of a historical population bottleneck, or if 'Alalā had historically low genetic diversity that predated human influence, perhaps as a result of earlier declines or founding events. In this study, we applied a hybridization-based sequence capture to generate a genome-wide single nucleotide polymorphism (SNP) dataset for comparing historical specimens collected in the 1890s, when 'Alalā were more numerous, to samples taken between 1973 and 1998, when 'Alalā population densities were near the lowest documented levels in the wild, prior to all individuals being collected for captive rearing. We found low genome-wide diversity in both sample groups, however, the modern sample group (1973 to 1998 cohort) exhibited relatively fewer polymorphic alleles, a lower proportion of polymorphic loci, and lower observed heterozygosity, consistent with a population decline and potential bottleneck effects. These results combined with a current low population size highlight the importance of continued efforts by conservation managers to mitigate inbreeding and maintain founder representation to preserve what genetic diversity remains.</p>","PeriodicalId":54811,"journal":{"name":"Journal of Heredity","volume":" ","pages":"32-44"},"PeriodicalIF":3.1,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41241009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M Ellesse Lauer, Haley Kodak, Tamer Albayrak, Marcos R Lima, Daniella Ray, Emma Simpson-Wade, David R Tevs, Elizabeth L Sheldon, Lynn B Martin, Aaron W Schrey
{"title":"Introduced house sparrows (Passer domesticus) have greater variation in DNA methylation than native house sparrows.","authors":"M Ellesse Lauer, Haley Kodak, Tamer Albayrak, Marcos R Lima, Daniella Ray, Emma Simpson-Wade, David R Tevs, Elizabeth L Sheldon, Lynn B Martin, Aaron W Schrey","doi":"10.1093/jhered/esad067","DOIUrl":"10.1093/jhered/esad067","url":null,"abstract":"<p><p>As a highly successful introduced species, house sparrows (Passer domesticus) respond rapidly to their new habitats, generating phenotypic patterns across their introduced range that resemble variation in native regions. Epigenetic mechanisms likely facilitate the success of introduced house sparrows by aiding particular individuals to adjust their phenotypes plastically to novel conditions. Our objective here was to investigate patterns of DNA methylation among populations of house sparrows at a broad geographic scale that included different introduction histories: invading, established, and native. We defined the invading category as the locations with introductions less than 70 years ago and the established category as the locations with greater than 70 years since introduction. We screened DNA methylation among individuals (n = 45) by epiRADseq, expecting that variation in DNA methylation among individuals from invading populations would be higher when compared with individuals from established and native populations. Invading house sparrows had the highest variance in DNA methylation of all three groups, but established house sparrows also had higher variance than native ones. The highest number of differently methylated regions were detected between invading and native populations of house sparrow. Additionally, DNA methylation was negatively correlated to time-since introduction, which further suggests that DNA methylation had a role in the successful colonization's of house sparrows.</p>","PeriodicalId":54811,"journal":{"name":"Journal of Heredity","volume":" ","pages":"11-18"},"PeriodicalIF":3.1,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71429281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christophe W Patterson, Erandi Bonillas-Monge, Adrian Brennan, Gregory F Grether, Luis Mendoza-Cuenca, Rachel Tucker, Yesenia M Vega-Sánchez, Jonathan Drury
{"title":"A chromosome-level genome assembly for the smoky rubyspot damselfly (Hetaerina titia).","authors":"Christophe W Patterson, Erandi Bonillas-Monge, Adrian Brennan, Gregory F Grether, Luis Mendoza-Cuenca, Rachel Tucker, Yesenia M Vega-Sánchez, Jonathan Drury","doi":"10.1093/jhered/esad070","DOIUrl":"10.1093/jhered/esad070","url":null,"abstract":"<p><p>Smoky rubyspot damselflies (Hetaerina titia Drury, 1773) are one of the most commonly encountered odonates along streams and rivers on both slopes of Central America and the Atlantic drainages in the United States and southern Canada. Owing to their highly variable wing pigmentation, they have become a model system for studying sexual selection and interspecific behavioral interference. Here, we sequence and assemble the genome of a female smoky rubyspot. Of the primary assembly (i.e. the principle pseudohaplotype), 98.8% is made up of 12 chromosomal pseudomolecules (2N = 22A + X). There are 75 scaffolds in total, an N50 of 120 Mb, a contig-N50 of 0.64 Mb, and a high arthropod BUSCO score [C: 97.6% (S: 97.3%, D: 0.3%), F: 0.8%, M: 1.6%]. We then compare our assembly to that of the blue-tailed damselfly genome (Ischnura elegans), the most complete damselfly assembly to date, and a recently published assembly for an American rubyspot damselfly (Hetaerina americana). Collectively, these resources make Hetaerina a genome-enabled genus for further studies of the ecological and evolutionary forces shaping biological diversity.</p>","PeriodicalId":54811,"journal":{"name":"Journal of Heredity","volume":" ","pages":"103-111"},"PeriodicalIF":3.0,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10838124/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138178019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Magnus Wolf, Carola Greve, Tilman Schell, Axel Janke, Thomas Schmitt, Steffen U Pauls, Horst Aspöck, Ulrike Aspöck
{"title":"The de novo genome of the Black-necked Snakefly (Venustoraphidia nigricollis Albarda, 1891): A resource to study the evolution of living fossils.","authors":"Magnus Wolf, Carola Greve, Tilman Schell, Axel Janke, Thomas Schmitt, Steffen U Pauls, Horst Aspöck, Ulrike Aspöck","doi":"10.1093/jhered/esad074","DOIUrl":"10.1093/jhered/esad074","url":null,"abstract":"<p><p>Snakeflies (Raphidioptera) are the smallest order of holometabolous insects that have kept their distinct and name-giving appearance since the Mesozoic, probably since the Jurassic, and possibly even since their emergence in the Carboniferous, more than 300 million years ago. Despite their interesting nature and numerous publications on their morphology, taxonomy, systematics, and biogeography, snakeflies have never received much attention from the general public, and only a few studies were devoted to their molecular biology. Due to this lack of molecular data, it is therefore unknown, if the conserved morphological nature of these living fossils translates to conserved genomic structures. Here, we present the first genome of the species and of the entire order of Raphidioptera. The final genome assembly has a total length of 669 Mbp and reached a high continuity with an N50 of 5.07 Mbp. Further quality controls also indicate a high completeness and no meaningful contamination. The newly generated data was used in a large-scaled phylogenetic analysis of snakeflies using shared orthologous sequences. Quartet score and gene concordance analyses revealed high amounts of conflicting signals within this group that might speak for substantial incomplete lineage sorting and introgression after their presumed re-radiation after the asteroid impact 66 million years ago. Overall, this reference genome will be a door-opening dataset for many future research applications, and we demonstrated its utility in a phylogenetic analysis that provides new insights into the evolution of this group of living fossils.</p>","PeriodicalId":54811,"journal":{"name":"Journal of Heredity","volume":" ","pages":"112-119"},"PeriodicalIF":3.0,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10838129/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138292445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}