Journal of Theoretical Probability最新文献

筛选
英文 中文
A Robust $$alpha $$-Stable Central Limit Theorem Under Sublinear Expectation without Integrability Condition 次线性期望下无可积条件下的稳健$$alpha $$ -稳定中心极限定理
4区 数学
Journal of Theoretical Probability Pub Date : 2023-11-03 DOI: 10.1007/s10959-023-01298-x
Lianzi Jiang, Gechun Liang
{"title":"A Robust $$alpha $$-Stable Central Limit Theorem Under Sublinear Expectation without Integrability Condition","authors":"Lianzi Jiang, Gechun Liang","doi":"10.1007/s10959-023-01298-x","DOIUrl":"https://doi.org/10.1007/s10959-023-01298-x","url":null,"abstract":"Abstract This article fills a gap in the literature by relaxing the integrability condition for the robust $$alpha $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>α</mml:mi> </mml:math> -stable central limit theorem under sublinear expectation. Specifically, for $$alpha in (0,1]$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>∈</mml:mo> <mml:mo>(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>]</mml:mo> </mml:mrow> </mml:math> , we prove that the normalized sums of i.i.d. non-integrable random variables $$big {n^{-frac{1}{alpha }}sum _{i=1}^{n}Z_{i}big }_{n=1}^{infty }$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mrow> <mml:mo>{</mml:mo> </mml:mrow> <mml:msup> <mml:mi>n</mml:mi> <mml:mrow> <mml:mo>-</mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mi>α</mml:mi> </mml:mfrac> </mml:mrow> </mml:msup> <mml:msubsup> <mml:mo>∑</mml:mo> <mml:mrow> <mml:mi>i</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:mi>n</mml:mi> </mml:msubsup> <mml:msub> <mml:mi>Z</mml:mi> <mml:mi>i</mml:mi> </mml:msub> <mml:msubsup> <mml:mrow> <mml:mo>}</mml:mo> </mml:mrow> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:mi>∞</mml:mi> </mml:msubsup> </mml:mrow> </mml:math> converge in law to $${tilde{zeta }}_{1}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mover> <mml:mi>ζ</mml:mi> <mml:mo>~</mml:mo> </mml:mover> <mml:mn>1</mml:mn> </mml:msub> </mml:math> , where $$({tilde{zeta }}_{t})_{tin [0,1]}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:msub> <mml:mover> <mml:mi>ζ</mml:mi> <mml:mo>~</mml:mo> </mml:mover> <mml:mi>t</mml:mi> </mml:msub> <mml:mo>)</mml:mo> </mml:mrow> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo>∈</mml:mo> <mml:mo>[</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>]</mml:mo> </mml:mrow> </mml:msub> </mml:math> is a multidimensional nonlinear symmetric $$alpha $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>α</mml:mi> </mml:math> -stable process with jump uncertainty set $${mathcal {L}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>L</mml:mi> </mml:math> . The limiting $$alpha $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>α</mml:mi> </mml:math> -stable process is further characterized by a fully nonlinear partial integro-differential equation (PIDE): $$begin{aligned} left{ begin{array}{l} displaystyle partial _{t}u(t,x)-sup limits _{F_{mu }in {mathcal {L}}}left{ int _{{mathbb {R}}^{d}}delta _{lambda }^{alpha }u(t,x)F_{mu }(dlambda )right} =0, displaystyle u(0,x)=phi (x),quad forall (t,x)in [0,1]times {mathbb {R}}^{d}, end{array} right. end{aligned}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mtable> <mml:mtr> <mml:mtd> <mml:mfenced> <mml:mrow> <mml:mtable> <mml:mtr> <mml:mtd> <mml:ms","PeriodicalId":54760,"journal":{"name":"Journal of Theoretical Probability","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135818728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shannon–McMillan–Breiman Theorem Along Almost Geodesics in Negatively Curved Groups 负弯曲群中沿几乎测地线的Shannon-McMillan-Breiman定理
4区 数学
Journal of Theoretical Probability Pub Date : 2023-11-02 DOI: 10.1007/s10959-023-01291-4
Amos Nevo, Felix Pogorzelski
{"title":"Shannon–McMillan–Breiman Theorem Along Almost Geodesics in Negatively Curved Groups","authors":"Amos Nevo, Felix Pogorzelski","doi":"10.1007/s10959-023-01291-4","DOIUrl":"https://doi.org/10.1007/s10959-023-01291-4","url":null,"abstract":"","PeriodicalId":54760,"journal":{"name":"Journal of Theoretical Probability","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135933122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Laws of Large Numbers for Weighted Sums of Independent Random Variables: A Game of Mass 独立随机变量加权和的大数定律:质量的博弈
4区 数学
Journal of Theoretical Probability Pub Date : 2023-11-01 DOI: 10.1007/s10959-023-01296-z
Luca Avena, Conrado da Costa
{"title":"Laws of Large Numbers for Weighted Sums of Independent Random Variables: A Game of Mass","authors":"Luca Avena, Conrado da Costa","doi":"10.1007/s10959-023-01296-z","DOIUrl":"https://doi.org/10.1007/s10959-023-01296-z","url":null,"abstract":"Abstract We consider weighted sums of independent random variables regulated by an increment sequence and provide operative conditions that ensure a strong law of large numbers for such sums in both the centred and non-centred case. The existing criteria for the strong law are either implicit or based on restrictions on the increment sequence. In our setup we allow for an arbitrary sequence of increments, possibly random, provided the random variables regulated by such increments satisfy some mild concentration conditions. In the non-centred case, convergence can be translated into the behaviour of a deterministic sequence and it becomes a game of mass when the expectation of the random variables is a function of the increment sizes. We identify various classes of increments and illustrate them with a variety of concrete examples.","PeriodicalId":54760,"journal":{"name":"Journal of Theoretical Probability","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136018338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
On the Local Time of Anisotropic Random Walk on $$mathbb Z^2$$ 各向异性随机行走的局部时间 $$mathbb Z^2$$
4区 数学
Journal of Theoretical Probability Pub Date : 2023-10-31 DOI: 10.1007/s10959-023-01297-y
Endre Csáki, Antónia Földes
{"title":"On the Local Time of Anisotropic Random Walk on $$mathbb Z^2$$","authors":"Endre Csáki, Antónia Földes","doi":"10.1007/s10959-023-01297-y","DOIUrl":"https://doi.org/10.1007/s10959-023-01297-y","url":null,"abstract":"","PeriodicalId":54760,"journal":{"name":"Journal of Theoretical Probability","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135808263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Theory of Singular Values for Finite Free Probability 有限自由概率的奇异值理论
4区 数学
Journal of Theoretical Probability Pub Date : 2023-10-29 DOI: 10.1007/s10959-023-01295-0
Aurelien Gribinski
{"title":"A Theory of Singular Values for Finite Free Probability","authors":"Aurelien Gribinski","doi":"10.1007/s10959-023-01295-0","DOIUrl":"https://doi.org/10.1007/s10959-023-01295-0","url":null,"abstract":"","PeriodicalId":54760,"journal":{"name":"Journal of Theoretical Probability","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136157510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Lower Deviation for the Supremum of the Support of Super-Brownian Motion 超布朗运动支持极值的低偏差
4区 数学
Journal of Theoretical Probability Pub Date : 2023-10-19 DOI: 10.1007/s10959-023-01292-3
Yan-Xia Ren, Renming Song, Rui Zhang
{"title":"Lower Deviation for the Supremum of the Support of Super-Brownian Motion","authors":"Yan-Xia Ren, Renming Song, Rui Zhang","doi":"10.1007/s10959-023-01292-3","DOIUrl":"https://doi.org/10.1007/s10959-023-01292-3","url":null,"abstract":"","PeriodicalId":54760,"journal":{"name":"Journal of Theoretical Probability","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135728558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Some Properties of Markov chains on the Free Group $${mathbb {F}}_2$$ 自由群上马尔可夫链的一些性质 $${mathbb {F}}_2$$
4区 数学
Journal of Theoretical Probability Pub Date : 2023-10-18 DOI: 10.1007/s10959-023-01294-1
Antoine Goldsborough, Stefanie Zbinden
{"title":"Some Properties of Markov chains on the Free Group $${mathbb {F}}_2$$","authors":"Antoine Goldsborough, Stefanie Zbinden","doi":"10.1007/s10959-023-01294-1","DOIUrl":"https://doi.org/10.1007/s10959-023-01294-1","url":null,"abstract":"","PeriodicalId":54760,"journal":{"name":"Journal of Theoretical Probability","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135825389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Cutpoints of (1,2) and (2,1) Random Walks on the Lattice of Positive Half Line (1,2)和(2,1)随机漫步在正半直线格上的截点
4区 数学
Journal of Theoretical Probability Pub Date : 2023-10-13 DOI: 10.1007/s10959-023-01293-2
Lanlan Tang, Hua-Ming Wang
{"title":"Cutpoints of (1,2) and (2,1) Random Walks on the Lattice of Positive Half Line","authors":"Lanlan Tang, Hua-Ming Wang","doi":"10.1007/s10959-023-01293-2","DOIUrl":"https://doi.org/10.1007/s10959-023-01293-2","url":null,"abstract":"","PeriodicalId":54760,"journal":{"name":"Journal of Theoretical Probability","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135854330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Green Function for an Asymptotically Stable Random Walk in a Half Space 半空间中渐近稳定随机漫步的格林函数
4区 数学
Journal of Theoretical Probability Pub Date : 2023-09-29 DOI: 10.1007/s10959-023-01283-4
Denis Denisov, Vitali Wachtel
{"title":"Green Function for an Asymptotically Stable Random Walk in a Half Space","authors":"Denis Denisov, Vitali Wachtel","doi":"10.1007/s10959-023-01283-4","DOIUrl":"https://doi.org/10.1007/s10959-023-01283-4","url":null,"abstract":"Abstract We consider an asymptotically stable multidimensional random walk $$S(n)=(S_1(n),ldots , S_d(n) )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>S</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:mo>(</mml:mo> <mml:msub> <mml:mi>S</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>,</mml:mo> <mml:mo>…</mml:mo> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>S</mml:mi> <mml:mi>d</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> . For every vector $$x=(x_1ldots ,x_d)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>x</mml:mi> <mml:mo>=</mml:mo> <mml:mo>(</mml:mo> <mml:msub> <mml:mi>x</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>…</mml:mo> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>x</mml:mi> <mml:mi>d</mml:mi> </mml:msub> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> with $$x_1ge 0$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>x</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>≥</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> , let $$tau _x:=min {n&gt;0: x_{1}+S_1(n)le 0}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>τ</mml:mi> <mml:mi>x</mml:mi> </mml:msub> <mml:mo>:</mml:mo> <mml:mo>=</mml:mo> <mml:mo>min</mml:mo> <mml:mrow> <mml:mo>{</mml:mo> <mml:mi>n</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> <mml:mo>:</mml:mo> <mml:msub> <mml:mi>x</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>S</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>≤</mml:mo> <mml:mn>0</mml:mn> <mml:mo>}</mml:mo> </mml:mrow> </mml:mrow> </mml:math> be the first time the random walk $$x+S(n)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>x</mml:mi> <mml:mo>+</mml:mo> <mml:mi>S</mml:mi> <mml:mo>(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> leaves the upper half space. We obtain the asymptotics of $$p_n(x,y):= {textbf{P}}(x+S(n) in y+Delta , tau _x&gt;n)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>p</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>y</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>:</mml:mo> <mml:mo>=</mml:mo> <mml:mi>P</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>+</mml:mo> <mml:mi>S</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>∈</mml:mo> <mml:mi>y</mml:mi> <mml:mo>+</mml:mo> <mml:mi>Δ</mml:mi> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>τ</mml:mi> <mml:mi>x</mml:mi> </mml:msub> <mml:mo>&gt;</mml:mo> <mml:mi>n</mml:mi> <mml:mo>)</mml:mo> </mml","PeriodicalId":54760,"journal":{"name":"Journal of Theoretical Probability","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135246621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
General Mean Reflected Backward Stochastic Differential Equations 一般均值反映后向随机微分方程
4区 数学
Journal of Theoretical Probability Pub Date : 2023-09-25 DOI: 10.1007/s10959-023-01288-z
Ying Hu, Remi Moreau, Falei Wang
{"title":"General Mean Reflected Backward Stochastic Differential Equations","authors":"Ying Hu, Remi Moreau, Falei Wang","doi":"10.1007/s10959-023-01288-z","DOIUrl":"https://doi.org/10.1007/s10959-023-01288-z","url":null,"abstract":"","PeriodicalId":54760,"journal":{"name":"Journal of Theoretical Probability","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135816097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信