The Distributions of the Mean of Random Vectors with Fixed Marginal Distribution

Pub Date : 2023-09-25 DOI:10.1007/s10959-023-01277-2
Andrzej Komisarski, Jacques Labuschagne
{"title":"The Distributions of the Mean of Random Vectors with Fixed Marginal Distribution","authors":"Andrzej Komisarski, Jacques Labuschagne","doi":"10.1007/s10959-023-01277-2","DOIUrl":null,"url":null,"abstract":"Abstract Using recent results concerning non-uniqueness of the center of the mix for completely mixable probability distributions, we obtain the following result: For each $$d\\in {\\mathbb {N}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>N</mml:mi> </mml:mrow> </mml:math> and each non-empty bounded Borel set $$B\\subset {\\mathbb {R}}^d$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>B</mml:mi> <mml:mo>⊂</mml:mo> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> </mml:mrow> </mml:math> , there exists a d -dimensional probability distribution $$\\varvec{\\mu }$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>μ</mml:mi> </mml:mrow> </mml:math> satisfying the following: For each $$n\\ge 3$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>3</mml:mn> </mml:mrow> </mml:math> and each probability distribution $$\\varvec{\\nu }$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>ν</mml:mi> </mml:mrow> </mml:math> on B , there exist d -dimensional random vectors $${\\textbf{X}}_{\\varvec{\\nu },1},{\\textbf{X}}_{\\varvec{\\nu },2},\\dots ,{\\textbf{X}}_{\\varvec{\\nu },n}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>X</mml:mi> <mml:mrow> <mml:mrow> <mml:mi>ν</mml:mi> </mml:mrow> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>X</mml:mi> <mml:mrow> <mml:mrow> <mml:mi>ν</mml:mi> </mml:mrow> <mml:mo>,</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:msub> <mml:mo>,</mml:mo> <mml:mo>⋯</mml:mo> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>X</mml:mi> <mml:mrow> <mml:mrow> <mml:mi>ν</mml:mi> </mml:mrow> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> </mml:math> such that $$\\frac{1}{n}({\\textbf{X}}_{\\varvec{\\nu },1}+{\\textbf{X}}_{\\varvec{\\nu },2}+\\dots +{\\textbf{X}}_{\\varvec{\\nu },n})\\sim \\varvec{\\nu }$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mi>n</mml:mi> </mml:mfrac> <mml:mrow> <mml:mo>(</mml:mo> <mml:msub> <mml:mi>X</mml:mi> <mml:mrow> <mml:mrow> <mml:mi>ν</mml:mi> </mml:mrow> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>X</mml:mi> <mml:mrow> <mml:mrow> <mml:mi>ν</mml:mi> </mml:mrow> <mml:mo>,</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:msub> <mml:mo>+</mml:mo> <mml:mo>⋯</mml:mo> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>X</mml:mi> <mml:mrow> <mml:mrow> <mml:mi>ν</mml:mi> </mml:mrow> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> </mml:mrow> </mml:msub> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>∼</mml:mo> <mml:mrow> <mml:mi>ν</mml:mi> </mml:mrow> </mml:mrow> </mml:math> and $${\\textbf{X}}_{\\varvec{\\nu },i}\\sim \\varvec{\\mu }$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>X</mml:mi> <mml:mrow> <mml:mrow> <mml:mi>ν</mml:mi> </mml:mrow> <mml:mo>,</mml:mo> <mml:mi>i</mml:mi> </mml:mrow> </mml:msub> <mml:mo>∼</mml:mo> <mml:mrow> <mml:mi>μ</mml:mi> </mml:mrow> </mml:mrow> </mml:math> for $$i=1,2,\\dots ,n$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>i</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mo>⋯</mml:mo> <mml:mo>,</mml:mo> <mml:mi>n</mml:mi> </mml:mrow> </mml:math> . We also show that the assumption regarding the boundedness of the set B cannot be completely omitted, but it can be substantially weakened.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10959-023-01277-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Using recent results concerning non-uniqueness of the center of the mix for completely mixable probability distributions, we obtain the following result: For each $$d\in {\mathbb {N}}$$ d N and each non-empty bounded Borel set $$B\subset {\mathbb {R}}^d$$ B R d , there exists a d -dimensional probability distribution $$\varvec{\mu }$$ μ satisfying the following: For each $$n\ge 3$$ n 3 and each probability distribution $$\varvec{\nu }$$ ν on B , there exist d -dimensional random vectors $${\textbf{X}}_{\varvec{\nu },1},{\textbf{X}}_{\varvec{\nu },2},\dots ,{\textbf{X}}_{\varvec{\nu },n}$$ X ν , 1 , X ν , 2 , , X ν , n such that $$\frac{1}{n}({\textbf{X}}_{\varvec{\nu },1}+{\textbf{X}}_{\varvec{\nu },2}+\dots +{\textbf{X}}_{\varvec{\nu },n})\sim \varvec{\nu }$$ 1 n ( X ν , 1 + X ν , 2 + + X ν , n ) ν and $${\textbf{X}}_{\varvec{\nu },i}\sim \varvec{\mu }$$ X ν , i μ for $$i=1,2,\dots ,n$$ i = 1 , 2 , , n . We also show that the assumption regarding the boundedness of the set B cannot be completely omitted, but it can be substantially weakened.
分享
查看原文
具有固定边际分布的随机向量的均值分布
利用最近关于完全可混合概率分布的混合中心非唯一性的结果,我们得到如下结果:对于每个$$d\in {\mathbb {N}}$$ d∈N和每个非空有界Borel集$$B\subset {\mathbb {R}}^d$$ B∧R d,存在一个d维概率分布$$\varvec{\mu }$$ μ满足以下条件:对于每个$$n\ge 3$$ n≥3和B上的每个概率分布$$\varvec{\nu }$$ ν,存在d维随机向量$${\textbf{X}}_{\varvec{\nu },1},{\textbf{X}}_{\varvec{\nu },2},\dots ,{\textbf{X}}_{\varvec{\nu },n}$$ X ν, 1, X ν, 2,⋯,X ν, n,使得$$\frac{1}{n}({\textbf{X}}_{\varvec{\nu },1}+{\textbf{X}}_{\varvec{\nu },2}+\dots +{\textbf{X}}_{\varvec{\nu },n})\sim \varvec{\nu }$$ 1 n (X ν, 1 + X ν, 2 +⋯+ X ν, n) ~ ν和$${\textbf{X}}_{\varvec{\nu },i}\sim \varvec{\mu }$$ X ν, i ~ μ对于$$i=1,2,\dots ,n$$ i = 1,2,⋯n。我们还证明了关于集合B的有界性的假设不能完全省略,但它可以被大大削弱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信