{"title":"Accurate epicenter locations in the vicinity of the seamount by using BBOBS array data","authors":"Tetsuya Aoyama, Nozomu Takeuchi, Yosuke Aoki","doi":"10.1016/j.jvolgeores.2024.108186","DOIUrl":"10.1016/j.jvolgeores.2024.108186","url":null,"abstract":"<div><p>A Mw = 6.4 earthquake, possibly related to submarine volcanism, occurred on October 23, 2006, in the vicinity of Monday Seamount, located in the Izu-Bonin-Mariana arc. Despite the size of the earthquake, the precise location of aftershocks is intractable with the routine data processing because of poor station coverage and complex waveforms traversing the oceanic lithosphere. This study overcomes these problems by using the Broadband Ocean Bottom Seismometer (BBOBS) array data with better azimuthal coverage and by developing new methods to detect the P-wave arrival time to locate the aftershocks precisely. Most of the relocated epicenters are located in the rift zone next to the edifice of the seamount. We interpret this pattern as the seismic activity induced by stress perturbation due to the dike intrusion.</p></div>","PeriodicalId":54753,"journal":{"name":"Journal of Volcanology and Geothermal Research","volume":"455 ","pages":"Article 108186"},"PeriodicalIF":2.4,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0377027324001781/pdfft?md5=a65adde3198990a7d344323b5a743965&pid=1-s2.0-S0377027324001781-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142162706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Statistical analysis of the ground deformation of Vulcanian explosions at Sakurajima volcano, Japan","authors":"Kyoka Ishii , Masato Iguchi","doi":"10.1016/j.jvolgeores.2024.108185","DOIUrl":"10.1016/j.jvolgeores.2024.108185","url":null,"abstract":"<div><p>The forecast of pulsatory explosions during volcanic unrest periods is an essential issue for the assessment and mitigation of volcanic hazards. Although various precursors are detectable through geophysical and geochemical monitoring, difficulties remain in precisely constraining possible scenarios. A probabilistic approach is effective in assessing risk while considering various uncertainties. Sakurajima volcano characterized by frequent Vulcanian activity is one of the suitable fields for the probabilistic forecast of pulsatory explosions. Their inflation-deflation patterns of ground deformation related to Vulcanian explosions are useful for evaluating the imminence and size of the next event. The large database obtained from its vigorous activity can contribute to statistical analysis. In this study, aiming the probabilistic forecast of the timing and size of explosions, we investigated the duration of inflation and volume changes at the pressure source using strain records of over 5000 events of Sakurajima volcano. Then, a stochastic model was estimated to explain the distribution of these events. The log-logistic distribution was found to be an appropriate model for data distribution, indicating the presence of competing processes, such as pressurization and depressurization, in the conduit. The model parameters of the log-logistic distribution temporally fluctuated reflecting the volcanic activity, especially increasing the magma supply from a deep region. We also suggested a methodology to constrain the probabilities of the likely timing and size of an imminent explosion using real-time strain monitoring and an estimated model distribution. Although some improvements would be needed for practical forecasting, our approach could be useful in predicting possible ash hazards.</p></div>","PeriodicalId":54753,"journal":{"name":"Journal of Volcanology and Geothermal Research","volume":"455 ","pages":"Article 108185"},"PeriodicalIF":2.4,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S037702732400177X/pdfft?md5=360453948044bc002966a28ee2e532de&pid=1-s2.0-S037702732400177X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142229018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Event classification, seismicity, and eruption forecasting at Great Sitkin Volcano, Alaska: 1999–2023","authors":"J.A. Power , D.C. Roman","doi":"10.1016/j.jvolgeores.2024.108182","DOIUrl":"10.1016/j.jvolgeores.2024.108182","url":null,"abstract":"<div><p>The frequency content of volcanogenic seismicity is often used to classify events and their spatial and temporal progression is then used to map subsurface volcanic processes. The progression of volcano-seismic events and associated source processes also plays a critical role in eruption forecasting. Here we develop and evaluate a computerized methodology for characterizing volcano-seismic event types using Frequency Index and Average Peak Frequency. We apply and test this technique at Great Sitkin Volcano, Alaska, classifying over 9000 hypocenters between 1999 and 2023. This 24-year time span covers periods of seismic quiescence, earthquake activity on nearby tectonic (bookshelf) faults, precursory unrest from 2016 to 2021, and the explosive onset in May 2021 of the ongoing effusive eruption. We use the spatial and temporal evolution of classified event types to map the active volcanic and tectonic processes, develop a conceptual model of the subsurface magmatic system, and perform a retrospective analysis of eruption forecasts at Great Sitkin Volcano between 2016 and the present. The classification and progression of hypocenters suggests the subsurface Great Sitkin Volcano magmatic system consists of a mid- to lower- crustal source zone between 10 and 40 km depth and an upper crustal magma storage area between −1 and 10 km depth (hypocenter depth is referenced to sea level and negative depths reflect height above sea level). The earliest precursors occurred in July 2016 and consisted of deep long-period and volcano-tectonic earthquakes at mid-crustal depths suggesting the subsequent unrest and eruption were triggered by a deeper intrusion of magma. This mid-crustal seismic activity was immediately followed by the onset upper-crustal long-period events and volcano-tectonic earthquakes VTs suggesting a strong linkage between the shallow and deeper portions of the magmatic system. The upper crustal area was likely capped by the 1974 lava dome until the magmatic explosion on May 26, 2021.</p></div>","PeriodicalId":54753,"journal":{"name":"Journal of Volcanology and Geothermal Research","volume":"454 ","pages":"Article 108182"},"PeriodicalIF":2.4,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0377027324001744/pdfft?md5=cbc9ce525c5102ecc6d3cff6dbf1d315&pid=1-s2.0-S0377027324001744-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142148591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pavol Zahorec , Juraj Papčo , Ema Nogová , Roman Pašteka
{"title":"Vertical gravity gradient in volcano monitoring – In situ measured or theoretical? (Campi Flegrei study)","authors":"Pavol Zahorec , Juraj Papčo , Ema Nogová , Roman Pašteka","doi":"10.1016/j.jvolgeores.2024.108184","DOIUrl":"10.1016/j.jvolgeores.2024.108184","url":null,"abstract":"<div><p>We analyse the vertical gravity gradient (VGG) properties at calderas using the Campi Flegrei (CF) site in Italy. In situ observed VGG values can depart significantly from the theoretical (normal) value of −308.6 μGal/m, particularly in areas of rugged relief. It is assumed that in sufficiently flat areas, the effect of geology, i.e., of the subsurface density heterogeneities, on VGG could prevail over the effect of terrain (topography), which can subsequently be neglected. With respect to the CF caldera, which is often considered as ‘reasonably flat area’, according to our findings the effect of topography on VGG is usually underestimated, while the effect of deeper geology is overestimated. We model the effect of the near topography on VGG at CF and subsequently verify the results of modelling by in situ observations to support our predictions. The results show that, in terms of VGG, the topographic relief plays a more significant role than the assumed geological sources even at ‘flat’ calderas such as CF. For a better understanding, in addition to CF, we analyse the effect of deeper geological sources on VGG also in the territory of Slovakia using a detailed gravimetric database of Slovakia. As a result, we question the use of in situ observed VGG values when processing and interpreting observed time-lapse gravity changes in volcanic areas accompanied by surface deformation.</p></div>","PeriodicalId":54753,"journal":{"name":"Journal of Volcanology and Geothermal Research","volume":"455 ","pages":"Article 108184"},"PeriodicalIF":2.4,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142162703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jorge E. Romero , Tania Villaseñor , Rodrigo Arcos , Edmundo Polanco , Laura Becerril , Edgar Pio , Domingo Jullian
{"title":"A Late-Pleistocene confined volcanic debris avalanche promoted by hydrothermal alteration at the Tinguiririca volcano (Andes of Central Chile)","authors":"Jorge E. Romero , Tania Villaseñor , Rodrigo Arcos , Edmundo Polanco , Laura Becerril , Edgar Pio , Domingo Jullian","doi":"10.1016/j.jvolgeores.2024.108181","DOIUrl":"10.1016/j.jvolgeores.2024.108181","url":null,"abstract":"<div><p>Distinguishing volcanic debris avalanche deposits from other epiclastic breccia could be complex. For more than 60 years, the Tinguiririca deposit (sourced from the homonymous volcano) in the Andes of Central Chile has been described by different authors as glacial moraines, a lahar, a volcanic debris avalanche, and even a debris flow deposit. To decipher its obscured origin and emplacement dynamics, we have carried out a detailed investigation of its distribution, contact relationships, sedimentology, and facies. Our findings unravel that the 57 km-long deposit is 5 to 300 m thick, totalling a reconstructed volume of 3.64 ± 0.05 km<sup>3</sup>. It is composed of unsorted heterometric breccias formed by clasts and blocks arranged in mixed and matrix facies characterised by distinctive lithological domains. In general, three clasts lithologies are dominant, consisting of black and grey andesites and hydrothermally altered clasts with jigsaw cracks and fractures. The deposit overlies terraced colluvium along the valleys and forms hummocks and ridges. Emplacement velocities estimates range from 39.6 m/s to 108.4 m/s. Therefore, the Tinguiririca deposit should represent a massive volcanic debris avalanche that formed after a lateral collapse that affected the ancient Tinguiririca Volcanic Complex, during the Late Pleistocene (between 45 ± 18 and c. 19.2 ± 1.2 ka). The abundance of hydrothermal minerals within the deposit's matrix and clasts (i.e., illite, phengite, epidote, tridymite, chlorite, hematite, jarosite, and alunite) all represent the volcano's hydrothermal system that likely favoured rock weakness and edifice collapse. Finally, the new interpretation is valuable for evaluating volcanic hazards and requires further mapping and research efforts.</p></div>","PeriodicalId":54753,"journal":{"name":"Journal of Volcanology and Geothermal Research","volume":"454 ","pages":"Article 108181"},"PeriodicalIF":2.4,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142148588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Estimating the mass eruption rate of volcanic eruptions from the plume height using Bayesian regression with historical data: The MERPH model","authors":"Mark J. Woodhouse","doi":"10.1016/j.jvolgeores.2024.108175","DOIUrl":"10.1016/j.jvolgeores.2024.108175","url":null,"abstract":"<div><p>The mass eruption rate (MER) of an explosive volcanic eruption is a commonly used quantifier of the magnitude of the eruption, and estimating it is important in managing volcanic hazards. The physical connection between the MER and the rise height of the eruption column results in a scaling relationship between these quantities, allowing one to be inferred from the other. Eruption source parameter datasets have been used to calibrate the relationship, but the uncertainties in the measurements used in the calibration are typically not accounted for in applications. This can lead to substantial over- or under-estimation. Here we apply a simple Bayesian approach to incorporate uncertainty into the calibration of the scaling relationship using Bayesian linear regression to determine probability density functions for model parameters. This allows probabilistic prediction of mass eruption rate given a plume height observation in a way that is consistent with the data used for calibration. By using non-informative priors, the posterior predictive distribution can be determined analytically. The methods and datasets are collected in a python package, called merph. We illustrate their use in sampling plausible MER—plume height pairs, and in identifying usual eruptions. We discuss applications to ensemble-based hazard assessments and potential developments of the approach.</p></div>","PeriodicalId":54753,"journal":{"name":"Journal of Volcanology and Geothermal Research","volume":"454 ","pages":"Article 108175"},"PeriodicalIF":2.4,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0377027324001677/pdfft?md5=660228d443721fe3d595db3e7d22f2f2&pid=1-s2.0-S0377027324001677-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142148592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Leonardo van der Laat , Zack Spica , Corentin Caudron , Társilo Girona
{"title":"Magma fizz: Tremor during the Kīlauea summit reservoir decompression","authors":"Leonardo van der Laat , Zack Spica , Corentin Caudron , Társilo Girona","doi":"10.1016/j.jvolgeores.2024.108174","DOIUrl":"10.1016/j.jvolgeores.2024.108174","url":null,"abstract":"<div><p>Typical eruptions at Kīlauea volcano involve the evacuation of magma from the summit and/or south caldera reservoirs towards the East or Southwest rift zones. The reservoir drainage provokes the summit deflation, and on extreme occasions, such as in 2018, the summit caldera collapse. Systematically, seismic tremor, often with a particular multichromatic spectral signature characterized by frequency gliding, accompanies summit deflation episodes. In 2018, this type of continuous tremor accompanied the steady subsidence stage, whereas discrete earthquakes dominated the collapse stage. In this work, we aim to understand the source mechanism of the <em>syn</em>-deflation tremor of 2018. To locate the seismic source, we develop a novel machine-learning-based algorithm as an alternative to the amplitude source location technique. We use a large high-resolution catalog to resolve a composite amplitude decay function. Under these conditions, our method outperforms the traditional technique. We locate the tremor source 1 km below the eastern perimeter of the Halema‘uma‘u crater, which coincides with the position of the summit magma reservoir, as determined in many other studies. Furthermore, we model the seismic source as pressure oscillations driven by gas porous flow at the roof of the reservoir. In this model, gas accumulates temporarily in many gas pockets between the magma and the roof. Our modeling shows that the gas flux is responsible for the tremor amplitude modulations, whereas the gas pocket thickness controls the frequency variations. Beyond a critical point of depressurization, the magma cannot contribute further to the tremor oscillations via decompression-driven degassing, nor support the roof above it, resulting in rock failure. This work advances our understanding of magma-degassing dynamics and tremor generation at Kilauea volcano, and provides novel seismological techniques for volcano seismology monitoring and research.</p></div>","PeriodicalId":54753,"journal":{"name":"Journal of Volcanology and Geothermal Research","volume":"454 ","pages":"Article 108174"},"PeriodicalIF":2.4,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0377027324001665/pdfft?md5=8b037312c503f946dccde432cb8afe31&pid=1-s2.0-S0377027324001665-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142129880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A decade (2013−2023) of direct sampling from high-temperature fumaroles at Avacha Volcano, Kamchatka: Gas geochemistry, seasonal and long-term variations","authors":"Nataliya A. Malik","doi":"10.1016/j.jvolgeores.2024.108179","DOIUrl":"10.1016/j.jvolgeores.2024.108179","url":null,"abstract":"<div><p>The 1991 eruption of Avacha volcano resulted in a lava plug inside its crater, making high-temperature fumaroles available for sampling. At present, there are two high-temperature fumarolic fields: the Eastern (up to 665 °C) and the Western (up to 840 °C), both associated with a fissure in the lava plug caused by a weak 2001 explosion. The paper presents chemical and isotopic compositions (H-O-C-S) of the directly sampled fumaroles over the period 2013–2023, mainly from the Eastern field. We revealed seasonal variations of water isotopic composition and concentrations of some components of the gas. High-temperature gases from Avacha volcano are characterized by chemical and isotopic compositions typical for volcanoes in subduction zones, but with a slightly increased content of H<sub>2</sub>O, a reduced content of HCl. A relatively high concentration of methane is noted in the gases of low-temperature field. Methane in high-temperature gas with δ<sup>13</sup>C(CH<sub>4</sub>) = −16.8 ‰ has abiogenic origin. For high-temperature gases, their redox state (H<sub>2</sub>/H<sub>2</sub>O and CO/CO<sub>2</sub>) is controlled mainly by the sulfur gas buffer (H<sub>2</sub>S/SO<sub>2</sub>); methane is not chemically equilibrated. The molar ratio C/S ∼ 1 is typical for volcanoes in the Kuril-Kamchatka Arc. The measured fumarolic temperatures at the Eastern field are descending over time from 626 °C in 2013 to 410 °C in 2023. The apparent equilibrium temperatures calculated for reactions that include CO, CO<sub>2</sub>, H<sub>2</sub>, H<sub>2</sub>O, H<sub>2</sub>S and SO<sub>2</sub> are generally higher than the measured temperatures and do not show the descending trend. However, calculated equilibrium temperatures for the H<sub>2</sub>O-CO-CO<sub>2</sub>-CH<sub>4</sub> system are very close to the measured temperatures. Two periods of the increased seismic activity which occurred from 2013 to 2023, in November 2014–January 2015 and October–December 2019, correlated with changes in the morphology and gas flow rates at the Western fumarolic field.</p></div>","PeriodicalId":54753,"journal":{"name":"Journal of Volcanology and Geothermal Research","volume":"455 ","pages":"Article 108179"},"PeriodicalIF":2.4,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142168124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"How residents and volcanoes co-produce risk knowledge: Ways of knowing and affective attunement to the rhythms of Lonquimay volcano, Chile","authors":"Francisca Vergara-Pinto , Nathaniel O'Grady , Aurora Fredriksen , Jorge E. Romero , Carla Marchant , Rory Walshe , Amy Donovan , Julie Morin , Malena Szlam","doi":"10.1016/j.jvolgeores.2024.108180","DOIUrl":"10.1016/j.jvolgeores.2024.108180","url":null,"abstract":"<div><p>In this paper, we present our understanding of the importance of affects in people's sense-making of volcanic risk in everyday life. In doing so, we explore how local knowledge on volcanism is produced and circulated through communities' ongoing affective encounters with volcanoes. Through ethnographic fieldwork and semi-structured interviews, we draw on the heterogeneous experiences and narratives of Malalcahuello residents living next to the Lonquimay volcanic complex in the Southern Andes of Chile. Its last eruption in 1988–1990 formed a new cone on the NE flank, called Navidad (<em>Christmas</em>), which has allowed residents to experience active volcanism in a twofold sense: being affected by its impacts during the eruption, and responding affectively to the volcano in everyday life. The results pave the way for a typology of affect-based ways of knowing volcanism. These are constituted by multiple people's viewpoints: 1) knowing the ground, 2) knowing the territory, 3) knowing the risk, and 4) knowing the behaviour. These ways of knowing vary according to, and are in part determined by, the different rhythms of the volcano itself. Therefore, active volcanism becomes a more-than-human agent of knowledge through its rhythmic presence in people's everyday lives. Over time, the local population has become affectively attuned to both ‘hazardous situations’ related to volcanic eruption and ‘risk and safe situations’ during volcanic quiescence. These attributes of human-volcano encounters turn hazardous spaces into affect-laden spaces at different times, raising the need to rethink spatio-temporal dimensions in knowledge dialogue and disaster risk reduction. Overall, the paper underlines the importance of affect-oriented risk research in Chile and worldwide to account for the pre-existent viewpoints from which a volcano is at the heart of people's concerns.</p></div>","PeriodicalId":54753,"journal":{"name":"Journal of Volcanology and Geothermal Research","volume":"454 ","pages":"Article 108180"},"PeriodicalIF":2.4,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0377027324001720/pdfft?md5=24055024fbb09226adae3e2d331c7f0a&pid=1-s2.0-S0377027324001720-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142148590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Arianna Soldati , Daniel Weidendorfer , Corrado Cimarelli , Ulrich Kueppers , Bruce F. Houghton , Caroline M. Tisdale , Donald B. Dingwell
{"title":"Crystal mush interaction controls eruptive style during the 2018 Kīlauea fissure eruption","authors":"Arianna Soldati , Daniel Weidendorfer , Corrado Cimarelli , Ulrich Kueppers , Bruce F. Houghton , Caroline M. Tisdale , Donald B. Dingwell","doi":"10.1016/j.jvolgeores.2024.108178","DOIUrl":"10.1016/j.jvolgeores.2024.108178","url":null,"abstract":"<div><p>We use new geochemical, petrological, and rheological data to constrain the formation and emplacement of the highly compositionally unusual(andesitic basalt) Kīlauea 2018 Fissure 17 (F17) eruptive products. Despite the restricted spatial and temporal distribution, F17 samples are texturally and geochemically diverse. The western samples are enriched in SiO<sub>2</sub> by up to 10 wt%, relative to their eastern equivalents; additionally, the western samples contain microcrystalline enclaves, absent from the homogenous eastern samples. The compositions erupted along F17 suggest interaction between the basaltic 2018 juvenile magma and a crystal mush at depth, likely a left-over from the nearby 1955 eruption. Magma mingling caused heating and local melting of remnant mush, leading to melt hybridization and volatile exsolution. Rapid water exsolution likely caused overpressurization of the reservoir underneath the western side of F17, leading to Strombolian explosions of viscous magma, in contrast to sustained Hawaiian fountaining on the eastern side. Remelting of remnant crystal mush and melt hybridization in open-conduit systems may hence be an effective mechanism in inducing volatile saturation.</p></div>","PeriodicalId":54753,"journal":{"name":"Journal of Volcanology and Geothermal Research","volume":"454 ","pages":"Article 108178"},"PeriodicalIF":2.4,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142148587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}