Linda Sobolewski , Christian Stenner , Lee J. Florea , Guy McWethy , Andrea I. Gomez-Patron , Edgar U. Zorn , Artur Ionescu , Eduardo Cartaya , Andreas Pflitsch
{"title":"Long-term development of lava dome morphology and thermal energy release in the crater of Mount St. Helens, Washington (USA)","authors":"Linda Sobolewski , Christian Stenner , Lee J. Florea , Guy McWethy , Andrea I. Gomez-Patron , Edgar U. Zorn , Artur Ionescu , Eduardo Cartaya , Andreas Pflitsch","doi":"10.1016/j.jvolgeores.2025.108274","DOIUrl":null,"url":null,"abstract":"<div><div>The crater of Mount St. Helens has undergone significant changes since the end of the 2004–2008 eruption cycle. Heat output from the new lava dome has decreased constantly in different phases of cooling. At the same time, the lava dome morphology changed, including substantial subsidence. Herein we present long-term dome evolution within the St. Helens crater by combining field investigations and remote sensing data. Repeated surveys of subglacial caves provide evidence for a new phase of dome cooling and reduced fumarolic activity. While the caves remained consistent or became larger before 2022, the latest field campaigns in 2023 indicated a strong volume reduction. One example is Mothra Cave, which reduced from 797.4 to 189.8 m in surveyed length in one year (2022 to 2023). These observations are supported by decreasing fumarole temperatures in/near the cave systems located at the dome flanks (trending towards 0 °C) as well as decreasing fumarole temperatures at the dome summit (∼380 °C in 2014/2015, ∼90 °C in 2021; ∼60 °C in 2024). Although ASTER data similarly revealed an overall cooling of the lava dome, field investigations enabled a more precise determination of the temperature distribution. As revealed by LiDAR data, the new 2004–2008 lava dome decreased in elevation more than 35 m from 2009 to 2019. In contrast, almost no elevation change was observed at the old 1980–1986 dome. The elevation loss is strongly related to initial dome growth structures. Drone images further characterized structures on the new dome, demonstrating correlations between fumarolic areas and substrate and morphology. Since lava dome degradation is associated with numerous hazards, information about their long-term development as well as the comparison between various parameters and their response time can contribute to hazard forecasts.</div></div>","PeriodicalId":54753,"journal":{"name":"Journal of Volcanology and Geothermal Research","volume":"460 ","pages":"Article 108274"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Volcanology and Geothermal Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377027325000101","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The crater of Mount St. Helens has undergone significant changes since the end of the 2004–2008 eruption cycle. Heat output from the new lava dome has decreased constantly in different phases of cooling. At the same time, the lava dome morphology changed, including substantial subsidence. Herein we present long-term dome evolution within the St. Helens crater by combining field investigations and remote sensing data. Repeated surveys of subglacial caves provide evidence for a new phase of dome cooling and reduced fumarolic activity. While the caves remained consistent or became larger before 2022, the latest field campaigns in 2023 indicated a strong volume reduction. One example is Mothra Cave, which reduced from 797.4 to 189.8 m in surveyed length in one year (2022 to 2023). These observations are supported by decreasing fumarole temperatures in/near the cave systems located at the dome flanks (trending towards 0 °C) as well as decreasing fumarole temperatures at the dome summit (∼380 °C in 2014/2015, ∼90 °C in 2021; ∼60 °C in 2024). Although ASTER data similarly revealed an overall cooling of the lava dome, field investigations enabled a more precise determination of the temperature distribution. As revealed by LiDAR data, the new 2004–2008 lava dome decreased in elevation more than 35 m from 2009 to 2019. In contrast, almost no elevation change was observed at the old 1980–1986 dome. The elevation loss is strongly related to initial dome growth structures. Drone images further characterized structures on the new dome, demonstrating correlations between fumarolic areas and substrate and morphology. Since lava dome degradation is associated with numerous hazards, information about their long-term development as well as the comparison between various parameters and their response time can contribute to hazard forecasts.
期刊介绍:
An international research journal with focus on volcanic and geothermal processes and their impact on the environment and society.
Submission of papers covering the following aspects of volcanology and geothermal research are encouraged:
(1) Geological aspects of volcanic systems: volcano stratigraphy, structure and tectonic influence; eruptive history; evolution of volcanic landforms; eruption style and progress; dispersal patterns of lava and ash; analysis of real-time eruption observations.
(2) Geochemical and petrological aspects of volcanic rocks: magma genesis and evolution; crystallization; volatile compositions, solubility, and degassing; volcanic petrography and textural analysis.
(3) Hydrology, geochemistry and measurement of volcanic and hydrothermal fluids: volcanic gas emissions; fumaroles and springs; crater lakes; hydrothermal mineralization.
(4) Geophysical aspects of volcanic systems: physical properties of volcanic rocks and magmas; heat flow studies; volcano seismology, geodesy and remote sensing.
(5) Computational modeling and experimental simulation of magmatic and hydrothermal processes: eruption dynamics; magma transport and storage; plume dynamics and ash dispersal; lava flow dynamics; hydrothermal fluid flow; thermodynamics of aqueous fluids and melts.
(6) Volcano hazard and risk research: hazard zonation methodology, development of forecasting tools; assessment techniques for vulnerability and impact.