{"title":"High‐resolution stable isotopic signals of ground ice indicate freeze–thaw history in permafrost on the northeastern Qinghai–Tibet Plateau","authors":"Yuzhong Yang, Qingbai Wu, Huijun Jin","doi":"10.1002/ppp.2172","DOIUrl":"https://doi.org/10.1002/ppp.2172","url":null,"abstract":"Understanding the mechanism of formation of ground ice and the freeze–thaw history of permafrost is essential when assessing the future of permafrost in a changing climate. High‐resolution ground ice records, integrating stable isotopes (δ18O, d‐excess, and δ13C), hydrochemistry (EC and pH) data, and cryostratigraphy at a depth of 4.8 m from two contrasting permafrost profiles (P‐1, P‐2) in the Source Area of the Yellow River (SAYR) on the northeastern Qinghai–Tibet Plateau (QTP), were investigated. The results suggested significant depth variations in the stable isotopes and hydrochemistry of the ground ice. The near‐surface ground ice (NSGI) and deep‐layer ground ice (DLGI) were characterized in terms of variations in stable isotopes and known modern active layer data. By synthesizing the measured δ18O and the modeled isotopic fractionation processes during freezing, we suggest that both the NSGI and DLGI in P‐1 were mainly formed by the segregation mechanism during permafrost aggradation. The NSGI in P‐2, however, exhibited quick freezing origins compared with the predominant ice segregation processes for the DLGI. By combining the evolution of various stable isotopes and hydrochemistry with 14C age data, four historical freeze–thaw stages were identified. Specifically, one thawing–refreezing stage (2.8–2.2 m), one freezing aggradation stage (2.2–1.6 m), and two permafrost aggradation–degradation cycle stages (4.8–2.8 m; 1.6–0.7 m) were differentiated, which emphasize the importance of climate‐induced freeze–thaw transitions and differing permafrost aggradation processes on ground ice formation and resultant isotope hydrochemical behaviors. This study is the first to use high‐resolution data in ground ice to interpret the freeze–thaw history of permafrost in the SAYR. These findings are important for further understanding of past permafrost evolution and projected future permafrost degradation trends on the QTP, and provide an alternative method to explore permafrost history.","PeriodicalId":54629,"journal":{"name":"Permafrost and Periglacial Processes","volume":"34 1","pages":"68 - 80"},"PeriodicalIF":5.0,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48718921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jambaljav Yamkhin, Gansukh Yadamsuren, Temuujin Khurelbaatar, Tsogt‐Erdene Gansukh, Undrakhtsetseg Tsogtbaatar, S. Adiya, Amarbayasgalan Yondon, Dashtseren Avirmed, S. Natsagdorj
{"title":"Spatial distribution mapping of permafrost in Mongolia using TTOP","authors":"Jambaljav Yamkhin, Gansukh Yadamsuren, Temuujin Khurelbaatar, Tsogt‐Erdene Gansukh, Undrakhtsetseg Tsogtbaatar, S. Adiya, Amarbayasgalan Yondon, Dashtseren Avirmed, S. Natsagdorj","doi":"10.1002/ppp.2165","DOIUrl":"https://doi.org/10.1002/ppp.2165","url":null,"abstract":"This study presents the results of permafrost mapping in Mongolia based on the TTOP (temperature‐on‐top‐of‐permafrost) approach, which were validated against in situ measurements at various locations. In situ measurements indicated that the mean annual ground temperature (MAGT) ranged from 0.6 to 2.2°C interannually, showing the greatest variability when furthest from 0°C. The differences between the modeled and measured MAGTs exceeded ±1°C in locations where permafrost was in a nonequilibrium state and was controlled predominantly by local factors. It was estimated that permafrost occupies one‐third of Mongolia. We divided the extent of the permafrost into five zones: continuous, discontinuous, sporadic, isolated, and seasonally frozen ground. In total, the permafrost zones cover ~462.8 × 103 km2, accounting for 29.3% of Mongolia. Of this total area, continuous permafrost accounted for 118.3 × 103 km2 (7.5%), discontinuous permafrost 127.7 × 103 km2 (8.1%), sporadic permafrost 112.4 × 103 km2 (7.1%), and isolated permafrost 104.4 × 103 km2 (6.6%).","PeriodicalId":54629,"journal":{"name":"Permafrost and Periglacial Processes","volume":"33 1","pages":"386 - 405"},"PeriodicalIF":5.0,"publicationDate":"2022-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43795060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xusheng Wan, W. Pei, Jianguo Lu, Enxi Qiu, Zhongrui Yan, Nima Pirhadi, Jishuai Zhu
{"title":"Analytical model to predict unfrozen water content based on the probability of ice formation in soils","authors":"Xusheng Wan, W. Pei, Jianguo Lu, Enxi Qiu, Zhongrui Yan, Nima Pirhadi, Jishuai Zhu","doi":"10.1002/ppp.2167","DOIUrl":"https://doi.org/10.1002/ppp.2167","url":null,"abstract":"The variation in unfrozen water content with temperature substantially affects coupled heat and water transport in frozen soil, causing frost heave and thaw settlement owing to the ice and water phase change and influencing soil stability in cold regions. Thus, analyzing the mechanism of water freezing and building a predictive model for the unfrozen water content of soils is paramount. In this study, an analytical model based on equivalent contact angle was developed to predict the unfrozen water content. The relationship between the equivalent contact angle and temperature was obtained based on the assumption that the heterogeneous nucleation rate nonlinearly decreased with temperature. The proposed analytical model was validated using existing unfrozen water content data at various temperatures for a silty clay soil material from the Qinghai–Tibet Plateau, and compared to several existing numerical models which predict unfrozen water content in soil materials. The results revealed a close relationship between the unfrozen water content and equivalent contact angle, and the equivalent contact angle increased as the temperature decreased. Meanwhile, the pore water in the soil first froze when the contact angle was smaller. Moreover, the values predicted by the analytical model for the unfrozen water content agreed well with the experimental results, especially under low‐temperature conditions and during the early stage of water freezing.","PeriodicalId":54629,"journal":{"name":"Permafrost and Periglacial Processes","volume":"33 1","pages":"436 - 451"},"PeriodicalIF":5.0,"publicationDate":"2022-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41925821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multi‐stage evolution of frost‐induced microtextures on the surface of quartz grains—An experimental study","authors":"M. Górska, B. Woronko","doi":"10.1002/ppp.2164","DOIUrl":"https://doi.org/10.1002/ppp.2164","url":null,"abstract":"Coarse sand‐sized (0.5–1.0 mm) grains of vein quartz were subjected to frost‐induced stress under controlled laboratory conditions. A total of 1,000 freeze–thaw (FT) cycles, simulated under different (low, high) water mineralization conditions in the temperature range from −5°C up to +10°C, were used to test effects on collected samples. Scanning electron microscopic (SEM) microtextural analysis of grain surfaces was performed at 0 (start) and after 50, 100, 300, 700, and 1,000 FT cycles. The results indicate that variable frost‐induced microtextural imprints encountered on quartz grain surfaces prior to and following analysis depend largely on the mineralization (dissolved solute content) of water involved in the weathering process. The higher the water mineralization, the greater the intensity of mechanical weathering. Two predominant outcomes in the course of these micro‐scale frost weathering tests have been identified: a physical (mechanical) aspect manifested by the occurrence of conchoidal fractures and breakage block microtextures dominating up to 300 FT cycles, and a chemical aspect resulting in the occurrence of precipitation crusts and obliteration of grain microrelief. Moreover, three additional stages of microtexture development may be distinguished with the evolution of frost‐induced microrelief on the surface of quartz grains: (i) initial cracks of large‐sized conchoidal fractures, (ii) increasing frost cycles yielding additional small‐sized conchoidal fractures, and (iii) advanced breakage blocks. Frost‐induced exposure of fresh, unweathered grain surfaces leads to refreshing of the grain surface.","PeriodicalId":54629,"journal":{"name":"Permafrost and Periglacial Processes","volume":"33 1","pages":"470 - 489"},"PeriodicalIF":5.0,"publicationDate":"2022-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46413675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Léa Bussière, M. Schmutz, R. Fortier, J. Lemieux, A. Dupuy
{"title":"Near‐surface geophysical imaging of a thermokarst pond in the discontinuous permafrost zone in Nunavik (Québec), Canada","authors":"Léa Bussière, M. Schmutz, R. Fortier, J. Lemieux, A. Dupuy","doi":"10.1002/ppp.2166","DOIUrl":"https://doi.org/10.1002/ppp.2166","url":null,"abstract":"In this study, high resolution ground‐penetrating radar (GPR), electrical resistivity tomography (ERT), and spectral‐induced polarization tomography (SIPT) were used to (i) delineate characteristic solifluction features, (ii) map the ice distribution, and (iii) assess subsurface water content and permeability in the surrounding rampart of a thermokarst pond in the discontinuous permafrost zone. The study site is located in the Tasiapik Valley near Umiujaq in Nunavik (Québec), Canada, which benefits from decades of geological mapping, geophysical investigation, and monitoring of ground temperature and thaw subsidence, providing an extensive understanding of the cryohydrogeological context of the area. The results of geophysical investigation undertaken in this study were cross validated using core sampling, laboratory core analysis, and in situ ground temperature and water content monitoring. Based on this investigation, a conceptual model was derived and compared to the stratigraphy of cross‐section described in literature in finer‐grained context. Very good consistency was found from one in situ geophysical survey to another, as well as between the derived stratigraphic models and the ground truth. The combination of all the available data allowed the development of a detailed cryohydrogeological model across the studied thermokarst pond, which highlights the effect of lithology, topography, and land cover on the distribution and mobility of water in the ground.","PeriodicalId":54629,"journal":{"name":"Permafrost and Periglacial Processes","volume":"33 1","pages":"353 - 369"},"PeriodicalIF":5.0,"publicationDate":"2022-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49418532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qinxue Wang, T. Okadera, Masataka Watanabe, Tonghua Wu, B. Ochirbat
{"title":"Ground warming and permafrost degradation in various terrestrial ecosystems in northcentral Mongolia","authors":"Qinxue Wang, T. Okadera, Masataka Watanabe, Tonghua Wu, B. Ochirbat","doi":"10.1002/ppp.2161","DOIUrl":"https://doi.org/10.1002/ppp.2161","url":null,"abstract":"To detect the response of permafrost to climate change in various terrestrial ecosystems, we established a permafrost monitoring network in 2007, which includes eight boreholes to monitor ground temperatures in forest, meadow, steppe, moderately dry steppe, and wetland ecosystems and three Automatic Weather Stations (AWS) to monitor climatic factors, such as wind speed (Ws), air temperature (Ta), relative humidity (RH), precipitation (P), solar radiation (Rs), net radiation (Rn), soil heat flux (SHF), soil temperature (Ts), and soil water content (SWC), in forest, meadow, and steppe ecosystems in north‐central Mongolia. Major indicators, including mean annual ground temperature (MAGT), active layer thickness (ALT), and depth of zero annual amplitude (DZAA), were estimated to detect permafrost degradation. The results show that MAGT has increased by 0.00–0.02°C per year (almost no change) in the ice‐poor permafrost areas and by 0.03–0.06°C per year in the ice‐rich permafrost on pingos and wetlands. ALT showed an annual increase of −0.78 to 0.36 cm (almost no change) in the forest and meadow ecosystems and 2.3–7.2 cm in wetland ecosystems, whereas it increased by 23.0–28.9 cm per year in the steppe ecosystems over the last decade. This implies that the permafrost has degraded more rapidly in the steppe ecosystems than in other ecosystems. Based on correlation analysis, ALT is correlated to P in the meadow ecosystems and to SWC in the forest ecosystem, and MAGT is correlated to RH. However, both ALT and MAGT show a close correlation with major climatic factors, such as Ta, RH, SHF, and SWC in the steppe ecosystem. DZAA shows a close negative correlation with Ta in all ecosystems. These results provide evidence for permafrost degradation and its different responses to climate change in various terrestrial ecosystems.","PeriodicalId":54629,"journal":{"name":"Permafrost and Periglacial Processes","volume":"33 1","pages":"406 - 424"},"PeriodicalIF":5.0,"publicationDate":"2022-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48977830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Influence of ecosystem and disturbance on near‐surface permafrost distribution, Whatì, Northwest Territories, Canada","authors":"Seamus V. Daly, P. Bonnaventure, W. Kochtitzky","doi":"10.1002/ppp.2160","DOIUrl":"https://doi.org/10.1002/ppp.2160","url":null,"abstract":"For remote communities in the discontinuous permafrost zone, access to permafrost distribution maps for hazard assessment is limited and more general products are often inadequate for use in local‐scale planning. In this study we apply established analytical methods to illustrate a time‐ and cost‐efficient method for conducting community‐scale permafrost mapping in the community of Whatì, Northwest Territories, Canada. We ran a binary logistic regression (BLR) using a combination of field data, digital surface model‐derived variables, and remotely sensed products. Independent variables included vegetation, topographic position index, and elevation bands. The dependent variable was sourced from 139 physical checks of near‐surface permafrost presence/absence sampled across the variable boreal–wetland environment. Vegetation is the strongest predictor of near‐surface permafrost in the regression. The regression predicts that 50.0% (minimum confidence: 36%) of the vegetated area is underlain by near‐surface permafrost with a spatial accuracy of 72.8%. Analysis of data recorded across various burnt and not‐burnt environments indicated that recent burn scenarios have significantly influenced the distribution of near‐surface permafrost in the community. A spatial burn analysis predicted up to an 18.3% reduction in near‐surface permafrost coverage, in a maximum burn scenario without factoring in the influence of climate change. The study highlights the potential that in an ecosystem with virtually homogeneous air temperature, ecosystem structure and disturbance history drive short‐term changes in permafrost distribution and evolution. Thus, at the community level these factors should be considered as seriously as changes to air temperature as climate changes.","PeriodicalId":54629,"journal":{"name":"Permafrost and Periglacial Processes","volume":"9 ","pages":"339 - 352"},"PeriodicalIF":5.0,"publicationDate":"2022-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50931898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Arthur Monhonval, J. Strauss, M. Thomas, C. Hirst, H. Titeux, Justine Louis, Alexia Gilliot, Eléonore du Bois d'Aische, B. Pereira, Aubry Vandeuren, G. Grosse, Lutz Schirrmeister, L. Jongejans, M. Ulrich, S. Opfergelt
{"title":"Thermokarst processes increase the supply of stabilizing surfaces and elements (Fe, Mn, Al, and Ca) for mineral–organic carbon interactions","authors":"Arthur Monhonval, J. Strauss, M. Thomas, C. Hirst, H. Titeux, Justine Louis, Alexia Gilliot, Eléonore du Bois d'Aische, B. Pereira, Aubry Vandeuren, G. Grosse, Lutz Schirrmeister, L. Jongejans, M. Ulrich, S. Opfergelt","doi":"10.1002/ppp.2162","DOIUrl":"https://doi.org/10.1002/ppp.2162","url":null,"abstract":"The stabilizing properties of mineral–organic carbon (OC) interactions have been studied in many soil environments (temperate soils, podzol lateritic soils, and paddy soils). Recently, interest in their role in permafrost regions is increasing as permafrost was identified as a hotspot of change. In thawing ice‐rich permafrost regions, such as the Yedoma domain, 327–466 Gt of frozen OC is buried in deep sediments. Interactions between minerals and OC are important because OC is located very near the mineral matrix. Mineral surfaces and elements could mitigate recent and future greenhouse gas emissions through physical and/or physicochemical protection of OC. The dynamic changes in redox and pH conditions associated with thermokarst lake formation and drainage trigger metal‐oxide dissolution and precipitation, likely influencing OC stabilization and microbial mineralization. However, the influence of thermokarst processes on mineral–OC interactions remains poorly constrained. In this study, we aim to characterize Fe, Mn, Al, and Ca minerals and their potential protective role for OC. Total and selective extractions were used to assess the crystalline and amorphous oxides or complexed metal pools as well as the organic acids found within these pools. We analyzed four sediment cores from an ice‐rich permafrost area in Central Yakutia, which were drilled (i) in undisturbed Yedoma uplands, (ii) beneath a recent lake formed within Yedoma deposits, (iii) in a drained thermokarst lake basin, and (iv) beneath a mature thermokarst lake from the early Holocene period. We find a decrease in the amount of reactive Fe, Mn, Al, and Ca in the deposits on lake formation (promoting reduction reactions), and this was largely balanced by an increase in the amount of reactive metals in the deposits on lake drainage (promoting oxidation reactions). We demonstrate an increase in the metal to C molar ratio on thermokarst process, which may indicate an increase in metal–C bindings and could provide a higher protective role against microbial mineralization of organic matter. Finally, we find that an increase in mineral–OC interactions corresponded to a decrease in CO2 and CH4 gas emissions on thermokarst process. Mineral–OC interactions could mitigate greenhouse gas production from permafrost thaw as soon as lake drainage occurs.","PeriodicalId":54629,"journal":{"name":"Permafrost and Periglacial Processes","volume":"33 1","pages":"452 - 469"},"PeriodicalIF":5.0,"publicationDate":"2022-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43313668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Post‐glacial dynamics of an alpine Little Ice Age glacitectonized frozen landform (Aget, western Swiss Alps)","authors":"Julie Wee, R. Delaloye","doi":"10.1002/ppp.2158","DOIUrl":"https://doi.org/10.1002/ppp.2158","url":null,"abstract":"Glaciers and frozen‐debris landforms have coexisted and episodically or continuously interacted throughout the Holocene at elevations where the climate conditions are cold enough for permafrost to occur. In the European Alps, the Little Ice Age (LIA) characterized the apogee of the last interaction phase. In areas of consecutive post‐LIA glacier shrinkage, the geomorphological dominant conditioning of the ongoing paraglacial phase may have transitioned from glacial to periglacial and later even shifted to post‐periglacial. Such transitions can be observed through the morphodynamics of glacitectonized frozen landforms (GFLs), which are permafrost‐related pre‐existing frozen masses of debris deformed (tectonized) by the pressure exerted by an interacting glacier. This contribution aims at evidencing the processes driving the ongoing morphodynamical evolution of an actively back‐creeping GFL within the LIA forefield of the Aget glacier on the basis of long‐term time series of ground surface temperature, and in‐situ geodetic and geoelectrical measurements. Our observations for the last two decades (1998–2020), which have been the warmest since the LIA, reveal a resistivity decrease in the permafrost body and a surface subsidence of up to a few centimeters per year. The former indicate a liquid water‐to‐ice content ratio increase within the permafrost body and the latter a ground ice melt at the permafrost table, both processes having taken place heterogeneously at the scale of the landform. The absence of acceleration of landform motion during that period despite a probable warming trend of the frozen ground may indicate that the ongoing degradation is reaching a tipping point at which processes related to interparticle friction and thinning of the permafrost body contribute to gradually inactivate the mechanism of permafrost creep.","PeriodicalId":54629,"journal":{"name":"Permafrost and Periglacial Processes","volume":"33 1","pages":"370 - 385"},"PeriodicalIF":5.0,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44964966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaoying Li, H. Jin, Long Sun, Hongwei Wang, Yadong Huang, R. He, X. Chang, Shao-peng Yu, S. Zang
{"title":"TTOP‐model‐based maps of permafrost distribution in Northeast China for 1961–2020","authors":"Xiaoying Li, H. Jin, Long Sun, Hongwei Wang, Yadong Huang, R. He, X. Chang, Shao-peng Yu, S. Zang","doi":"10.1002/ppp.2157","DOIUrl":"https://doi.org/10.1002/ppp.2157","url":null,"abstract":"Northeast China has experienced rapid and substantial climate warming over the past 60 years, and permafrost is degrading rapidly. In this study, permafrost distribution and extent in Northeast China were estimated from monitored ground surface temperatures using the temperature at the top of permafrost (TTOP) model and geographically weighted regression method. Using the TTOP model, the computed mean annual ground temperatures (MAGT@TOP) at the top of permafrost of Northeast China increased significantly from 1961–1990 (1.8°C) to 1991–2020 (3.0°C). The areal extents of permafrost defined by a subzero MAGT@TOP (MAGT@TOP ≤ 0°C) in Northeast China in the period 1961–1990 and 1991–2020 were estimated at 461.5 × 103 and 365.8 × 103 km2, respectively, indicating a decline of 95.7 × 103 km2. On average, the simulated MAGT@TOP values were 2.07°C lower than the observed MAGT@TOP values in boreholes. The linear correlation coefficient between the simulated and measured MAGT@TOP values was 0.63. Compared with the simulation results of other previous models, the result of this research is more reliable and accurate. The compiled maps of permafrost distribution can serve as an important reference for the study of permafrost changes in Northeast China.","PeriodicalId":54629,"journal":{"name":"Permafrost and Periglacial Processes","volume":"33 1","pages":"425 - 435"},"PeriodicalIF":5.0,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44542913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}