Sigrid Haeggström, Magnus Ingelman-Sundberg, Svante Pääbo, Hugo Zeberg
{"title":"The clinically relevant CYP2C8*3 and CYP2C9*2 haplotype is inherited from Neandertals","authors":"Sigrid Haeggström, Magnus Ingelman-Sundberg, Svante Pääbo, Hugo Zeberg","doi":"10.1038/s41397-022-00284-6","DOIUrl":"10.1038/s41397-022-00284-6","url":null,"abstract":"Genetic variation in genes encoding cytochrome P450 enzymes influences the metabolism of drugs and endogenous compounds. The locus containing the cytochrome genes CYP2C8 and CYP2C9 on chromosome 10 exhibits linkage disequilibrium between the CYP2C8*3 and CYP2C9*2 alleles, forming a haplotype of ~300 kilobases. This haplotype is associated with altered metabolism of several drugs, most notably reduced metabolism of warfarin and phenytoin, leading to toxicity at otherwise therapeutic doses. Here we show that this haplotype is inherited from Neandertals.","PeriodicalId":54624,"journal":{"name":"Pharmacogenomics Journal","volume":"22 4","pages":"247-249"},"PeriodicalIF":2.8,"publicationDate":"2022-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9363273/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40465859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hiroki Yamada, Rio Ohmori, Naoto Okada, Shingen Nakamura, Kumiko Kagawa, Shiro Fujii, Hirokazu Miki, Keisuke Ishizawa, Masahiro Abe, Youichi Sato
{"title":"A machine learning model using SNPs obtained from a genome-wide association study predicts the onset of vincristine-induced peripheral neuropathy","authors":"Hiroki Yamada, Rio Ohmori, Naoto Okada, Shingen Nakamura, Kumiko Kagawa, Shiro Fujii, Hirokazu Miki, Keisuke Ishizawa, Masahiro Abe, Youichi Sato","doi":"10.1038/s41397-022-00282-8","DOIUrl":"10.1038/s41397-022-00282-8","url":null,"abstract":"Vincristine treatment may cause peripheral neuropathy. In this study, we identified the genes associated with the development of peripheral neuropathy due to vincristine therapy using a genome-wide association study (GWAS) and constructed a predictive model for the development of peripheral neuropathy using genetic information-based machine learning. The study included 72 patients admitted to the Department of Hematology, Tokushima University Hospital, who received vincristine. Of these, 56 were genotyped using the Illumina Asian Screening Array-24 Kit, and a GWAS for the onset of peripheral neuropathy caused by vincristine was conducted. Using Sanger sequencing for 16 validation samples, the top three single nucleotide polymorphisms (SNPs) associated with the onset of peripheral neuropathy were determined. Machine learning was performed using the statistical software R package “caret”. The 56 GWAS and 16 validation samples were used as the training and test sets, respectively. Predictive models were constructed using random forest, support vector machine, naive Bayes, and neural network algorithms. According to the GWAS, rs2110179, rs7126100, and rs2076549 were associated with the development of peripheral neuropathy on vincristine administration. Machine learning was performed using these three SNPs to construct a prediction model. A high accuracy of 93.8% was obtained with the support vector machine and neural network using rs2110179 and rs2076549. Thus, peripheral neuropathy development due to vincristine therapy can be effectively predicted by a machine learning prediction model using SNPs associated with it.","PeriodicalId":54624,"journal":{"name":"Pharmacogenomics Journal","volume":"22 4","pages":"241-246"},"PeriodicalIF":2.8,"publicationDate":"2022-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40398491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Evangelia Eirini Tsermpini, Christina I. Kalogirou, George C. Kyriakopoulos, George P. Patrinos, Constantinos Stathopoulos
{"title":"miRNAs as potential diagnostic biomarkers and pharmacogenomic indicators in psychiatric disorders","authors":"Evangelia Eirini Tsermpini, Christina I. Kalogirou, George C. Kyriakopoulos, George P. Patrinos, Constantinos Stathopoulos","doi":"10.1038/s41397-022-00283-7","DOIUrl":"10.1038/s41397-022-00283-7","url":null,"abstract":"The heterogeneity of psychiatric disorders and the lack of reliable biomarkers for prediction and treatments follow-up pose difficulties towards recognition and understanding of the molecular basis of psychiatric diseases. However, several studies based on NGS approaches have shown that miRNAs could regulate gene expression during onset and disease progression and could serve as potential diagnostic and pharmacogenomics biomarkers during treatment. We provide herein a detailed overview of circulating miRNAs and their expression profiles as biomarkers in schizophrenia, bipolar disorder and major depressive disorder and their role in response to specific treatments. Bioinformatics analysis of miR-34a, miR-106, miR-134 and miR-132, which are common among SZ, BD and MDD patients, showed brain enrichment and involvement in the modulation of critical signaling pathways, which are often deregulated in psychiatric disorders. We propose that specific miRNAs support accurate diagnosis and effective precision treatment of psychiatric disorders.","PeriodicalId":54624,"journal":{"name":"Pharmacogenomics Journal","volume":"22 4","pages":"211-222"},"PeriodicalIF":2.8,"publicationDate":"2022-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40104450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Farhana Islam, Daniel Hain, David Lewis, Rebecca Law, Lisa C. Brown, Julie-Anne Tanner, Daniel J. Müller
{"title":"Pharmacogenomics of Clozapine-induced agranulocytosis: a systematic review and meta-analysis","authors":"Farhana Islam, Daniel Hain, David Lewis, Rebecca Law, Lisa C. Brown, Julie-Anne Tanner, Daniel J. Müller","doi":"10.1038/s41397-022-00281-9","DOIUrl":"10.1038/s41397-022-00281-9","url":null,"abstract":"Although clozapine is the most effective pharmacotherapy for treatment-resistant schizophrenia, it is under-utilized, and initiation is often delayed. One reason is the occurrence of a potentially fatal adverse reaction, clozapine-induced agranulocytosis (CIA). Identifying genetic variations contributing to CIA would help predict patient risk of developing CIA and personalize treatment. Here, we (1) review existing pharmacogenomic studies of CIA, and (2) conduct meta-analyses to identify targets for clinical implementation. A systematic literature search identified studies that included individuals receiving clozapine who developed CIA and controls who did not. Results showed that individuals carrying the HLA-DRB1*04:02 allele had nearly sixfold (95% CI 2.20–15.80, pcorrected = 0.03) higher odds of CIA with a negative predictive value of 99.3%. Previously unreplicated alleles, TNFb5, HLA-B*59:01, TNFb4, and TNFd3 showed significant associations with CIA after multiple-testing corrections. Our findings suggest that a predictive HLA-DRB1*04:02-based pharmacogenomic test may be promising for clinical implementation but requires further investigation.","PeriodicalId":54624,"journal":{"name":"Pharmacogenomics Journal","volume":"22 4","pages":"230-240"},"PeriodicalIF":2.8,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41397-022-00281-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41484995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Simon Verdez, Quentin Thomas, Philippine Garret, Céline Verstuyft, Emilie Tisserant, Antonio Vitobello, Frédéric Tran Mau-Them, Christophe Philippe, Marc Bardou, Maxime Luu, Abderrahmane Bourredjem, Patrick Callier, Christel Thauvin-Robinet, Nicolas Picard, Laurence Faivre, Yannis Duffourd
{"title":"Exome sequencing allows detection of relevant pharmacogenetic variants in epileptic patients","authors":"Simon Verdez, Quentin Thomas, Philippine Garret, Céline Verstuyft, Emilie Tisserant, Antonio Vitobello, Frédéric Tran Mau-Them, Christophe Philippe, Marc Bardou, Maxime Luu, Abderrahmane Bourredjem, Patrick Callier, Christel Thauvin-Robinet, Nicolas Picard, Laurence Faivre, Yannis Duffourd","doi":"10.1038/s41397-022-00280-w","DOIUrl":"10.1038/s41397-022-00280-w","url":null,"abstract":"Beyond the identification of causal genetic variants in the diagnosis of Mendelian disorders, exome sequencing can detect numerous variants with potential relevance for clinical care. Clinical interventions can thus be conducted to improve future health outcomes for patients and their at-risk relatives, such as predicting late-onset genetic disorders accessible to prevention, treatment or identifying differential drug efficacy and safety. To evaluate the interest of such pharmacogenetic information, we designed an “in house” pipeline to determine the status of 122 PharmGKB (Pharmacogenomics Knowledgebase) variant-drug combinations in 31 genes. This pipeline was applied to a cohort of 90 epileptic patients who had previously an exome sequencing (ES) analysis, to determine the frequency of pharmacogenetic variants. We performed a retrospective analysis of drug plasma concentrations and treatment efficacy in patients bearing at least one relevant PharmGKB variant. For PharmGKB level 1A variants, CYP2C9 status for phenytoin prescription was the only relevant information. Nineteen patients were treated with phenytoin, among phenytoin-treated patients, none were poor metabolizers and four were intermediate metabolizers. While being treated with a standard protocol (10–23 mg/kg/30 min loading dose followed by 5 mg/kg/8 h maintenance dose), all identified intermediate metabolizers had toxic plasma concentrations (20 mg/L). In epileptic patients, pangenomic sequencing can provide information about common pharmacogenetic variants likely to be useful to guide therapeutic drug monitoring, and in the case of phenytoin, to prevent clinical toxicity caused by high plasma levels.","PeriodicalId":54624,"journal":{"name":"Pharmacogenomics Journal","volume":"22 5-6","pages":"258-263"},"PeriodicalIF":2.8,"publicationDate":"2022-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43150187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Julia C. F. Quintanilha, Susan Geyer, Amy S. Etheridge, Alessandro Racioppi, Kelli Hammond, Daniel J. Crona, Carol E. Peña, Sawyer B. Jacobson, Federica Marmorino, Daniele Rossini, Chiara Cremolini, Hanna K. Sanoff, Ghassan K. Abou-Alfa, Federico Innocenti
{"title":"KDR genetic predictor of toxicities induced by sorafenib and regorafenib","authors":"Julia C. F. Quintanilha, Susan Geyer, Amy S. Etheridge, Alessandro Racioppi, Kelli Hammond, Daniel J. Crona, Carol E. Peña, Sawyer B. Jacobson, Federica Marmorino, Daniele Rossini, Chiara Cremolini, Hanna K. Sanoff, Ghassan K. Abou-Alfa, Federico Innocenti","doi":"10.1038/s41397-022-00279-3","DOIUrl":"10.1038/s41397-022-00279-3","url":null,"abstract":"No biomarkers are available to predict toxicities induced by VEGFR TKIs. This study aimed to identify markers of toxicities induced by these drugs using a discovery-validation approach. The discovery set included 140 sorafenib-treated cancer patients (TARGET study) genotyped for SNPs in 56 genes. The most significant SNPs associated with grade ≥2 hypertension, diarrhea, dermatologic toxicities, and composite toxicity (any one of the toxicities) were tested for association with grade ≥2 toxicity in a validation set of 201 sorafenib-treated patients (Alliance/CALGB 80802). The validated SNP was tested for association with grade ≥2 toxicity in 107 (LCCC 1029) and 82 (Italian cohort) regorafenib-treated patients. SNP-toxicity associations were evaluated using logistic regression, and a meta-analysis between the studies was performed by inverse variance. Variant rs4864950 in KDR increased the risk of grade ≥2 composite toxicity in TARGET, Alliance/CALGB 80802, and the Italian cohort (meta-analysis p = 6.79 × 10−4, OR = 2.01, 95% CI 1.34–3.01). We identified a predictor of toxicities induced by VEGFR TKIs. NCT00073307 (TARGET), NCT01015833 (Alliance/CALGB 80802), and NCT01298570 (LCCC 1029).","PeriodicalId":54624,"journal":{"name":"Pharmacogenomics Journal","volume":"22 5-6","pages":"251-257"},"PeriodicalIF":2.8,"publicationDate":"2022-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9556853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ankita Narang, Paul Lacaze, Kathlyn J. Ronaldson, John J. McNeil, Mahesh Jayaram, Naveen Thomas, Rory Sellmer, David N. Crockford, Robert Stowe, Steven C. Greenway, Christos Pantelis, Chad A. Bousman
{"title":"Whole-genome sequencing analysis of clozapine-induced myocarditis","authors":"Ankita Narang, Paul Lacaze, Kathlyn J. Ronaldson, John J. McNeil, Mahesh Jayaram, Naveen Thomas, Rory Sellmer, David N. Crockford, Robert Stowe, Steven C. Greenway, Christos Pantelis, Chad A. Bousman","doi":"10.1038/s41397-022-00271-x","DOIUrl":"10.1038/s41397-022-00271-x","url":null,"abstract":"One of the concerns limiting the use of clozapine in schizophrenia treatment is the risk of rare but potentially fatal myocarditis. Our previous genome-wide association study and human leucocyte antigen analyses identified putative loci associated with clozapine-induced myocarditis. However, the contribution of DNA variation in cytochrome P450 genes, copy number variants and rare deleterious variants have not been investigated. We explored these unexplored classes of DNA variation using whole-genome sequencing data from 25 cases with clozapine-induced myocarditis and 25 demographically-matched clozapine-tolerant control subjects. We identified 15 genes based on rare variant gene-burden analysis (MLLT6, CADPS, TACC2, L3MBTL4, NPY, SLC25A21, PARVB, GPR179, ACAD9, NOL8, C5orf33, FAM127A, AFDN, SLC6A11, PXDN) nominally associated (p < 0.05) with clozapine-induced myocarditis. Of these genes, 13 were expressed in human myocardial tissue. Although independent replication of these findings is required, our study provides preliminary insights into the potential role of rare genetic variants in susceptibility to clozapine-induced myocarditis.","PeriodicalId":54624,"journal":{"name":"Pharmacogenomics Journal","volume":"22 3","pages":"173-179"},"PeriodicalIF":2.8,"publicationDate":"2022-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41884078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Linnea M. Baudhuin, Laura J. Train, Shaun G. Goodman, Gary E. Lane, Ryan J. Lennon, Verghese Mathew, Vishakantha Murthy, Tamim M. Nazif, Derek Y. F. So, John P. Sweeney, Alan H. B. Wu, Charanjit S. Rihal, Michael E. Farkouh, Naveen L. Pereira
{"title":"Point of care CYP2C19 genotyping after percutaneous coronary intervention","authors":"Linnea M. Baudhuin, Laura J. Train, Shaun G. Goodman, Gary E. Lane, Ryan J. Lennon, Verghese Mathew, Vishakantha Murthy, Tamim M. Nazif, Derek Y. F. So, John P. Sweeney, Alan H. B. Wu, Charanjit S. Rihal, Michael E. Farkouh, Naveen L. Pereira","doi":"10.1038/s41397-022-00278-4","DOIUrl":"10.1038/s41397-022-00278-4","url":null,"abstract":"Loss-of-function CYP2C19 variants are associated with increased cumulative ischemic outcomes warranting CYP2C19 genotyping prior to clopidogrel administration. TAILOR-PCI was an international, multicenter (40 sites), prospective, randomized trial comparing rapid point of care (POC) genotype-guided vs. conventional anti-platelet therapy. The performance of buccal-based rapid CYP2C19 genotyping performed by non-laboratory-trained staff in TAILOR-PCI was assessed. Pre-trial training and evaluation involved rapid genotyping of 373 oral samples, with 99.5% (371/373) concordance with Sanger sequencing. During TAILOR-PCI, 5302 patients undergoing PCI were randomized to POC rapid CYP2C19 *2, *3, and *17 genotyping versus no genotyping. At 12 months post-PCI, TaqMan genotyping determined 99.1% (2,364/2,385) concordance with the POC results, with 90.7–98.8% sensitivity and 99.2–99.6% specificity. In conclusion, non-laboratory personnel can be successfully trained for on-site instrument operation and POC rapid genotyping with analytical accuracy and precision across multiple international centers, thereby supporting POC genotyping in patient-care settings, such as the cardiac catheterization laboratory. Clinical Trial Registration: https://www.clinicalTrials.gov (Identifier: NCT01742117).","PeriodicalId":54624,"journal":{"name":"Pharmacogenomics Journal","volume":"22 5-6","pages":"303-307"},"PeriodicalIF":2.8,"publicationDate":"2022-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9559833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vakaramoko Diaby, Aram Babcock, Yushi Huang, Richard K. Moussa, Paula S. Espinal, Michelin Janvier, Diana Soler, Apeksha Gupta, Parul Jayakar, Magaly Diaz-Barbosa, Balagangadhar Totapally, Jun Sasaki, Anuj Jayakar, Daria Salyakina
{"title":"Real-world economic evaluation of prospective rapid whole-genome sequencing compared to a matched retrospective cohort of critically ill pediatric patients in the United States","authors":"Vakaramoko Diaby, Aram Babcock, Yushi Huang, Richard K. Moussa, Paula S. Espinal, Michelin Janvier, Diana Soler, Apeksha Gupta, Parul Jayakar, Magaly Diaz-Barbosa, Balagangadhar Totapally, Jun Sasaki, Anuj Jayakar, Daria Salyakina","doi":"10.1038/s41397-022-00277-5","DOIUrl":"10.1038/s41397-022-00277-5","url":null,"abstract":"There is an increasing demand for supporting the adoption of rapid whole-genome sequencing (rWGS) by demonstrating its real-world value. We aimed to assess the cost-effectiveness of rWGS in critically ill pediatric patients with diseases of unknown cause. Data were collected prospectively of patients admitted to the Nicklaus Children’s Hospital’s intensive care units from March 2018 to September 2020, with rWGS (N = 65). Comparative data were collected in a matched retrospective cohort with standard diagnostic genetic testing. We determined total costs, diagnostic yield (DY), and incremental cost-effectiveness ratio (ICER) adjusted for selection bias and right censoring. Sensitivity analyses explored the robustness of ICER through bootstrapping. rWGS resulted in a diagnosis in 39.8% while standard testing in 13.5% (p = 0.026). rWGS resulted in a mean saving per person of $100,440 (SE = 26,497, p < 0.001) and a total of $6.53 M for 65 patients. rWGS in critically ill pediatric patients is cost-effective, cost-saving, shortens diagnostic odyssey, and triples the DY of traditional approaches.","PeriodicalId":54624,"journal":{"name":"Pharmacogenomics Journal","volume":"22 4","pages":"223-229"},"PeriodicalIF":2.8,"publicationDate":"2022-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48240752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shangqing Jiang, Patrick C. Mathias, Nathaniel Hendrix, Brian H. Shirts, Peter Tarczy-Hornoch, David Veenstra, Daniel Malone, Beth Devine
{"title":"Implementation of pharmacogenomic clinical decision support for health systems: a cost-utility analysis","authors":"Shangqing Jiang, Patrick C. Mathias, Nathaniel Hendrix, Brian H. Shirts, Peter Tarczy-Hornoch, David Veenstra, Daniel Malone, Beth Devine","doi":"10.1038/s41397-022-00275-7","DOIUrl":"10.1038/s41397-022-00275-7","url":null,"abstract":"We constructed a cost-effectiveness model to assess the clinical and economic value of a CDS alert program that provides pharmacogenomic (PGx) testing results, compared to no alert program in acute coronary syndrome (ACS) and atrial fibrillation (AF), from a health system perspective. We defaulted that 20% of 500,000 health-system members between the ages of 55 and 65 received PGx testing for CYP2C19 (ACS-clopidogrel) and CYP2C9, CYP4F2 and VKORC1 (AF-warfarin) annually. Clinical events, costs, and quality-adjusted life years (QALYs) were calculated over 20 years with an annual discount rate of 3%. In total, 3169 alerts would be fired. The CDS alert program would help avoid 16 major clinical events and 6 deaths for ACS; and 2 clinical events and 0.9 deaths for AF. The incremental cost-effectiveness ratio was $39,477/QALY. A PGx-CDS alert program was cost-effective, under a willingness-to-pay threshold of $100,000/QALY gained, compared to no alert program.","PeriodicalId":54624,"journal":{"name":"Pharmacogenomics Journal","volume":"22 3","pages":"188-197"},"PeriodicalIF":2.8,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42905512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}