PositivityPub Date : 2023-12-16DOI: 10.1007/s11117-023-01009-0
S. Dempe, N. Gadhi, L. Lafhim
{"title":"Correction to: Optimality conditions for pessimistic bilevel problems using convexificator","authors":"S. Dempe, N. Gadhi, L. Lafhim","doi":"10.1007/s11117-023-01009-0","DOIUrl":"https://doi.org/10.1007/s11117-023-01009-0","url":null,"abstract":"","PeriodicalId":54596,"journal":{"name":"Positivity","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138995640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PositivityPub Date : 2023-11-27DOI: 10.1007/s11117-023-01021-4
Bahri Turan, Hüma Gürkök
{"title":"On unbounded order continuous operators 2","authors":"Bahri Turan, Hüma Gürkök","doi":"10.1007/s11117-023-01021-4","DOIUrl":"https://doi.org/10.1007/s11117-023-01021-4","url":null,"abstract":"<p>Let <i>E</i> and <i>F</i> be two Archimedean Riesz spaces. An operator <span>(T:Erightarrow F)</span> is said to be unbounded order continuous (<i>uo</i>-continuous), if <span>(u_{alpha }overset{uo}{rightarrow }0)</span> in <i>E</i> implies <span>(Tu_{alpha }overset{uo}{ rightarrow }0)</span> in <i>F</i>. In this study, our main aim is to give the solution to two open problems which are posed by Bahramnezhad and Azar. Using this, we obtain that the space <span>(L_{uo}(E,F))</span> of order bounded unbounded order continuous operators is an ideal in <span>(L_{b}(E,F))</span> for Dedekind complete Riesz space <i>F</i>. In general, by giving an example that the space <span>(L_{uo}(E,F))</span> of order bounded unbounded order continuous operators is not a band in <span>( L_{b}(E,F))</span>, we obtain the conditions on <i>E</i> or <i>F</i> for the space <span>( L_{uo}(E,F))</span> to be a band in <span>(L_{b}(E,F))</span>. Then, we give the extension theorem for <i>uo</i>-continuous operators similar to Veksler’s theorem for order continuous operators.</p>","PeriodicalId":54596,"journal":{"name":"Positivity","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138505534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PositivityPub Date : 2023-11-26DOI: 10.1007/s11117-023-01022-3
J. C. Guella, J. Jäger
{"title":"Strictly positive definite non-isotropic kernels on two-point homogeneous manifolds: the asymptotic approach","authors":"J. C. Guella, J. Jäger","doi":"10.1007/s11117-023-01022-3","DOIUrl":"https://doi.org/10.1007/s11117-023-01022-3","url":null,"abstract":"<p>We present sufficient conditions for a family of positive definite kernels on a compact two-point homogeneous space to be strictly positive definite based on their expansion in eigenfunctions of the Laplace–Beltrami operator. We also present a characterisation of this kernel class. The family analyzed is a generalization of the isotropic kernels and the case of a real sphere is analyzed in details.</p>","PeriodicalId":54596,"journal":{"name":"Positivity","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2023-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138505532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PositivityPub Date : 2023-11-09DOI: 10.1007/s11117-023-01019-y
Sameh Bououn
{"title":"The interplay between algebras and lattices: Stone–Weierstrass for illustration","authors":"Sameh Bououn","doi":"10.1007/s11117-023-01019-y","DOIUrl":"https://doi.org/10.1007/s11117-023-01019-y","url":null,"abstract":"","PeriodicalId":54596,"journal":{"name":"Positivity","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135241757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PositivityPub Date : 2023-11-07DOI: 10.1007/s11117-023-01020-5
Raluca Dumitru, Jose A. Franco
{"title":"Near order and metric-like functions on the cone of positive definite matrices","authors":"Raluca Dumitru, Jose A. Franco","doi":"10.1007/s11117-023-01020-5","DOIUrl":"https://doi.org/10.1007/s11117-023-01020-5","url":null,"abstract":"","PeriodicalId":54596,"journal":{"name":"Positivity","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135432813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PositivityPub Date : 2023-11-05DOI: 10.1007/s11117-023-01018-z
Sakshi Gupta, Rekha Gupta, Manjari Srivastava
{"title":"On scalarization and well-posedness in set optimization with a partial set order relation","authors":"Sakshi Gupta, Rekha Gupta, Manjari Srivastava","doi":"10.1007/s11117-023-01018-z","DOIUrl":"https://doi.org/10.1007/s11117-023-01018-z","url":null,"abstract":"","PeriodicalId":54596,"journal":{"name":"Positivity","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135725041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PositivityPub Date : 2023-10-16DOI: 10.1007/s11117-023-01015-2
H. Raubenheimer, J. van Appel
{"title":"On logarithms of measures","authors":"H. Raubenheimer, J. van Appel","doi":"10.1007/s11117-023-01015-2","DOIUrl":"https://doi.org/10.1007/s11117-023-01015-2","url":null,"abstract":"Abstract Let A be a Banach algebra and let $$xin A$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>x</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>A</mml:mi> </mml:mrow> </mml:math> have the property that its spectrum does not separate 0 from infinity. It is well known that x has a logarithm, i.e., there exists $$yin A$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>y</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>A</mml:mi> </mml:mrow> </mml:math> with $$x=e^y$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>x</mml:mi> <mml:mo>=</mml:mo> <mml:msup> <mml:mi>e</mml:mi> <mml:mi>y</mml:mi> </mml:msup> </mml:mrow> </mml:math> . We will use this statement to identify measures defined on a locally compact group to have logarithms. Also, we will show that the converse of the above statement is in general not true. Our results will be related to infinitely divisible probability measures.","PeriodicalId":54596,"journal":{"name":"Positivity","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136078262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PositivityPub Date : 2023-10-15DOI: 10.1007/s11117-023-01016-1
Indranil Sarkar, Gaurav Singh
{"title":"On the uniqueness of continuous positive solution for a non-linear integral equation whose singularity lies in the reciprocal of the solution","authors":"Indranil Sarkar, Gaurav Singh","doi":"10.1007/s11117-023-01016-1","DOIUrl":"https://doi.org/10.1007/s11117-023-01016-1","url":null,"abstract":"","PeriodicalId":54596,"journal":{"name":"Positivity","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136185844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PositivityPub Date : 2023-10-11DOI: 10.1007/s11117-023-01013-4
Evgeniya Burtseva, Lech Maligranda
{"title":"A new result on boundedness of the Riesz potential in central Morrey–Orlicz spaces","authors":"Evgeniya Burtseva, Lech Maligranda","doi":"10.1007/s11117-023-01013-4","DOIUrl":"https://doi.org/10.1007/s11117-023-01013-4","url":null,"abstract":"Abstract We improve our results on boundedness of the Riesz potential in the central Morrey–Orlicz spaces and the corresponding weak-type version. We also present two new properties of the central Morrey–Orlicz spaces: nontriviality and inclusion property.","PeriodicalId":54596,"journal":{"name":"Positivity","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136064067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}