关于测度的对数

IF 0.8 3区 数学 Q2 MATHEMATICS
H. Raubenheimer, J. van Appel
{"title":"关于测度的对数","authors":"H. Raubenheimer, J. van Appel","doi":"10.1007/s11117-023-01015-2","DOIUrl":null,"url":null,"abstract":"Abstract Let A be a Banach algebra and let $$x\\in A$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>x</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>A</mml:mi> </mml:mrow> </mml:math> have the property that its spectrum does not separate 0 from infinity. It is well known that x has a logarithm, i.e., there exists $$y\\in A$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>y</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>A</mml:mi> </mml:mrow> </mml:math> with $$x=e^y$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>x</mml:mi> <mml:mo>=</mml:mo> <mml:msup> <mml:mi>e</mml:mi> <mml:mi>y</mml:mi> </mml:msup> </mml:mrow> </mml:math> . We will use this statement to identify measures defined on a locally compact group to have logarithms. Also, we will show that the converse of the above statement is in general not true. Our results will be related to infinitely divisible probability measures.","PeriodicalId":54596,"journal":{"name":"Positivity","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On logarithms of measures\",\"authors\":\"H. Raubenheimer, J. van Appel\",\"doi\":\"10.1007/s11117-023-01015-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let A be a Banach algebra and let $$x\\\\in A$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>x</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>A</mml:mi> </mml:mrow> </mml:math> have the property that its spectrum does not separate 0 from infinity. It is well known that x has a logarithm, i.e., there exists $$y\\\\in A$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>y</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>A</mml:mi> </mml:mrow> </mml:math> with $$x=e^y$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>x</mml:mi> <mml:mo>=</mml:mo> <mml:msup> <mml:mi>e</mml:mi> <mml:mi>y</mml:mi> </mml:msup> </mml:mrow> </mml:math> . We will use this statement to identify measures defined on a locally compact group to have logarithms. Also, we will show that the converse of the above statement is in general not true. Our results will be related to infinitely divisible probability measures.\",\"PeriodicalId\":54596,\"journal\":{\"name\":\"Positivity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Positivity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11117-023-01015-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Positivity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11117-023-01015-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要设A是一个Banach代数,且设$$x\in A$$ x∈A具有其谱不将0与无穷分开的性质。众所周知,x有对数,即存在$$y\in A$$ y∈a,且$$x=e^y$$ x = ey。我们将使用这个语句来确定在局部紧群上定义的具有对数的测度。同样,我们将证明上述陈述的反面通常是不正确的。我们的结果将与无限可分的概率测度有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On logarithms of measures
Abstract Let A be a Banach algebra and let $$x\in A$$ x A have the property that its spectrum does not separate 0 from infinity. It is well known that x has a logarithm, i.e., there exists $$y\in A$$ y A with $$x=e^y$$ x = e y . We will use this statement to identify measures defined on a locally compact group to have logarithms. Also, we will show that the converse of the above statement is in general not true. Our results will be related to infinitely divisible probability measures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Positivity
Positivity 数学-数学
CiteScore
1.80
自引率
10.00%
发文量
88
审稿时长
>12 weeks
期刊介绍: The purpose of Positivity is to provide an outlet for high quality original research in all areas of analysis and its applications to other disciplines having a clear and substantive link to the general theme of positivity. Specifically, articles that illustrate applications of positivity to other disciplines - including but not limited to - economics, engineering, life sciences, physics and statistical decision theory are welcome. The scope of Positivity is to publish original papers in all areas of mathematics and its applications that are influenced by positivity concepts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信