Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering最新文献

筛选
英文 中文
A computational study of leading-edge wall cooling effect on shock wave–boundary layer interaction in forward-facing step 前缘壁面冷却对前台阶激波-边界层相互作用影响的计算研究
4区 工程技术
Vinoth Kumar P, Jayaprakash N Murugan
{"title":"A computational study of leading-edge wall cooling effect on shock wave–boundary layer interaction in forward-facing step","authors":"Vinoth Kumar P, Jayaprakash N Murugan","doi":"10.1177/09544100231206567","DOIUrl":"https://doi.org/10.1177/09544100231206567","url":null,"abstract":"A computational study has been done to understand the effect of leading-edge wall cooling on shock wave–boundary layer interaction. Shock wave–boundary layer interaction is studied over a forward-facing step at supersonic Mach 2.5. The study was carried out using Ansys. The work aims to explore the implementation of wall cooling at the leading edge as a separation control strategy for supersonic forward-facing step-induced flow separation. We use a finite-volume method based on upwind flux difference splitting and second-order upwind flow discretization. The simulation results are validated with the available experimental data. Furthermore, using numerical simulations, we found that the separation bubble size was reduced by 18.36% when the walls were marginally cooled to 150 K, while the separation was reduced by 32.65% when the walls were strongly cooled to 100 K.","PeriodicalId":54566,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135569273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel deep-learning-based pressure distribution prediction approach of airfoils 基于深度学习的翼型压力分布预测新方法
4区 工程技术
Hao Zhang
{"title":"A novel deep-learning-based pressure distribution prediction approach of airfoils","authors":"Hao Zhang","doi":"10.1177/09544100231206570","DOIUrl":"https://doi.org/10.1177/09544100231206570","url":null,"abstract":"Pressure distribution is a crucial flow characteristic and a key consideration in supercritical airfoil design. Traditionally, obtaining the pressure distribution involves time-consuming and computationally expensive wind tunnel experiments and computational fluid dynamics calculations. This study proposes a deep-learning-based approach to directly map input geometric information to the pressure distribution output, thereby avoiding costly wind tunnel experiments and iterative computational fluid dynamics simulations based on Navier–Stokes equations to address these challenges. Conventional surrogate models typically focus on predicting simple force factors, such as lift and drag coefficients, or require the conversion of airfoil data into images for model training. The novel approach utilizes a Variational Autoencoder for pressure distribution characteristic extraction and reconstruction from feature variables. Unlike conventional models, this approach avoids image conversion and employs a radial basis function neural network for effective mapping. The model exhibits good fitting and generalization capabilities on both training and test datasets, offering a promising solution for rapid pressure distribution prediction in airfoil design. This novel deep-learning-based approach advances airfoil design methodologies, offering significant advantages in computational efficiency and performance prediction. By directly mapping geometric information to pressure distribution, it provides an innovative and promising tool for airfoil design optimization.","PeriodicalId":54566,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering","volume":"42 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135778867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analytical models for critical heights of vortexing in flat and spherical bottom tanks with siphon and bottom drains 带虹吸和底排水管的平底和球形底槽中临界涡高的分析模型
4区 工程技术
G Nageswaran, Mahadev Prabhu, Anil Lal S, R Ajith Kumar
{"title":"Analytical models for critical heights of vortexing in flat and spherical bottom tanks with siphon and bottom drains","authors":"G Nageswaran, Mahadev Prabhu, Anil Lal S, R Ajith Kumar","doi":"10.1177/09544100231205141","DOIUrl":"https://doi.org/10.1177/09544100231205141","url":null,"abstract":"Critical height or critical submergence is liquid level at which air-core vortex extends from the free surface into drain hole when a liquid is drained from a container/tank. Extensive analytical and experimental studies have been reported on critical height of bath tub vortex, for liquid draining downward from flat bottom propellant tanks. Rockets making use of liquid propellants mostly employ spherical bottom propellant tanks as well as siphon or upward drain flow. Keeping in view of such practical applications, analytical models are developed for critical height, considering the effects of siphon drain and the shape of tank bottom. Additional design parameters influencing the behavior for each case are identified. Appropriate governing equations and a solution methodology are developed pertinent to the system considered, to predict the critical height for siphon drain and spherical bottom tank independently as well as for both combined. The results indicate that the critical height for spherical bottom tank is higher than for flat bottom tank, due to higher local flow velocity. Siphon geometry can be designed for critical height much less than normal drain from flat bottom tank. These observations are in accordance with the results published in the literature. This paper reports the analytical models and solution methodology to predict the critical height for vortexing for normal draining from spherical tank bottom, siphon draining from both flat and spherical bottom tanks.","PeriodicalId":54566,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering","volume":"82 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135887941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical investigation of aero-optical effects around the turret based on delayed detached eddy simulation and unsteady Reynolds averaged Navier-Stokes 基于延迟分离涡模拟和非定常Reynolds平均Navier-Stokes的炮塔周围气动光学效应数值研究
4区 工程技术
Xiao-Tong Tan, He-Yong Xu
{"title":"Numerical investigation of aero-optical effects around the turret based on delayed detached eddy simulation and unsteady Reynolds averaged Navier-Stokes","authors":"Xiao-Tong Tan, He-Yong Xu","doi":"10.1177/09544100231207568","DOIUrl":"https://doi.org/10.1177/09544100231207568","url":null,"abstract":"Delayed Detached Eddy Simulation (DDES) and Unsteady Reynolds Averaged Navier-Stokes (URANS), based on the two-equation Shear Stress Transport (SST) model, are implemented to investigate the flow features and the aero-optical distortions around the turret. The Mach number is Ma = 0.4 and the Reynolds number is Re = 1.43 × 10 6 . Instantaneous and time-averaged flow fields are presented to compare the ability of DDES and URANS in predicting the flow features. The instantaneous results show that DDES can resolve the abundant flow structures and more disordered density distributions than URANS. The time-averaged pressure coefficient and the density distribution of both methods are generally similar, but the time-averaged turbulent kinetic energy of URANS is far higher than that of DDES. The time-averaged pressure coefficient of DDES is closer to experimental data. In the windward view, typical surface flow features of DDES and URANS are similar. In the leeward view, there are remarkable differences of typical flow features between DDES and URANS. At the six angles of elevation, 60°, 76°, 90°, 103°, 120°, and 132°, the spatial-temporal wavefront distortions are calculated and discussed with the geometric ray-tracing method and the Zernike polynomial fitting, respectively. In spatial distribution, the wavefront distortions of DDES and URANS are slightly different from the experimental data. At the angles of 60°, 76°, 90°, and 103°, the tendencies of wavefront distortion of DDES at different tracing distances are the same with that of URANS, which is due to the same ability of two methods to resolve the density distributions in the attached flow region. However, the results of DDES agree well with the experimental results at the angles of 120° and 132°, which is bigger than the results of URANS. For temporal characteristics, the frequencies of wavefront distortions of DDES are obviously higher than that of URANS. The amplitudes of wavefront distortions by DDES are about 3 to 5 times higher than that by URANS. At the cases of two different FLHs at Ma = 0.4, the flow structures are totally similar, and the tendencies of wavefront distortion with θ are also similar. At the cases of three Mach number, the compression has a big influence on the wavefront distortion.","PeriodicalId":54566,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136033972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A hybrid methodology for knowledge organization and application of Chinese civil aviation regulations from mission safety support perspective 任务安全保障视角下中国民航法规知识组织与应用的混合方法
4区 工程技术
Haotian Niu, Cunbao Ma, Zhiyu She, Pei Han, Jiuxing Yuan
{"title":"A hybrid methodology for knowledge organization and application of Chinese civil aviation regulations from mission safety support perspective","authors":"Haotian Niu, Cunbao Ma, Zhiyu She, Pei Han, Jiuxing Yuan","doi":"10.1177/09544100231199203","DOIUrl":"https://doi.org/10.1177/09544100231199203","url":null,"abstract":"Safety is one of the most important issues in aviation. Aviation regulations provide significant information pertinent to the safety design and operation of aircraft; however, this information has not been effectively used. It is difficult to precisely identify and obtain the necessary information due to massive and unstructured provisions. In this study, a hybrid methodology is proposed to realize knowledge system construction using Chinese Civil Aviation Regulations as the object of study. To realize structured knowledge organization and intelligent knowledge application for aviation regulations, the hybrid methodology integrates a semantic cohesion model, a knowledge recognition model, a knowledge organization model, and a knowledge application model. A knowledge system of aviation regulations is built using the hybrid methodology comprising all knowledge necessary for aviation safety. The system provides intelligent knowledge support for the safety analysis of aircraft from the perspective of control system, including the accurate positioning of control elements and thorough acquisition of control conditions. Experiments were conducted to confirm the accuracy of the proposed method, and the 56,853 knowledge triples contained in the knowledge system supported its reliability. A few examples of knowledge retrieval are provided, focusing on the interaction processes of socio-technical elements during aircraft missions. It takes only a few seconds to acquire the knowledge required for safety analysis. The examples show how the hybrid methodology and knowledge system can be utilized to increase the efficiency of safety analysis for socio-technical systems while advancing intelligent knowledge applications in the aviation domain.","PeriodicalId":54566,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering","volume":"54 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134947821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of a curved turning vane on the heat transfer and fluid flow of four-pass internal cooling channels of gas turbine blades 弯曲叶片对燃气轮机叶片四道内冷却通道传热和流体流动的影响
4区 工程技术
Pouya Pouyaei, Mohammad Hassan Kayhani, Mahmood Norouzi, Alireza Bakhshinejad Bahambari, Mirae Kim, Kyung Chun Kim
{"title":"Effect of a curved turning vane on the heat transfer and fluid flow of four-pass internal cooling channels of gas turbine blades","authors":"Pouya Pouyaei, Mohammad Hassan Kayhani, Mahmood Norouzi, Alireza Bakhshinejad Bahambari, Mirae Kim, Kyung Chun Kim","doi":"10.1177/09544100231204950","DOIUrl":"https://doi.org/10.1177/09544100231204950","url":null,"abstract":"This numerical study examined the effects of a curved turning vane on the heat transfer and pressure loss of a four-pass internal cooling channel. Three-dimensional omega-based Reynolds stress (RSM-ω) turbulence model equations were used in the computation process. Three different curved turning vane configurations were studied using a simple, without a turning vane under stationary and rotating conditions for Reynolds numbers between 20,000 and 60,000 and a rotation number of 0.042. The numerical results showed good agreement with previous experimental data. Under both stationary and rotating conditions, the curved turning vane in a hub turn reduced the pressure drop significantly compared to the conventional turning vanes. Although a curved turning vane attenuated overall heat transfer, the local heat transfer increased it in particular regions, such as the hub turn and the fourth turn of cooling passages, particularly in cases with smaller radii. Coolant flow through the hub turn of the serpentine channel can reduce recirculation, separation, and flow impingement, which are unfavorable factors of pressure loss, owing to the semi-circular configuration of the curved turning vane. Regarding the rotating conditions, four-pass channels with a smaller radius of a curved turning vane provide better overall cooling performance.","PeriodicalId":54566,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135695871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigations on electromagnetic scattering characteristics of aircraft rudder considering electromagnetic discontinuities 考虑电磁不连续的飞机方向舵电磁散射特性研究
4区 工程技术
Yi-ran Gu, Shu-sheng Chen, Zheng-hong Gao, Lin Zhou, Jiang-tao Huang
{"title":"Investigations on electromagnetic scattering characteristics of aircraft rudder considering electromagnetic discontinuities","authors":"Yi-ran Gu, Shu-sheng Chen, Zheng-hong Gao, Lin Zhou, Jiang-tao Huang","doi":"10.1177/09544100231204378","DOIUrl":"https://doi.org/10.1177/09544100231204378","url":null,"abstract":"This work investigates the scattering characteristics of the rudder structure of aircraft considering electromagnetic discontinuities through multi level fast multipole algorithm (MLFMA) of the computational electromagnetics. Firstly, the scattering characteristics of the rudder seam and its influence on the omnidirectional radar cross section (RCS) are performed. Based on the traditional high-frequency analysis theory, the source and spatial contribution distribution of seam scattering are further studied. Numerical results demonstrate that the sidewall of the rudder seam is an important scattering source, and the radar absorbing material (RAM) coated on the sidewall of the seam has a good RCS reduction effect. In addition, this work presents the influence of the rudder deflection on the stealth performance, analyzes the effect of the rudder movement of the ordinary aileron and the split drag rudder on the scattering characteristics of the whole aircraft. The common aileron has little effect on the stealth performance of the aircraft, and it only causes scattering peak in the direction opposite to the control surface. However, the split drag rudder has great damage to the opposite direction stealth performance of the aircraft. When its deflection angle is 45°, the mean value of the opposite direction RCS increases by about two orders of magnitude compared with the deflection angle 0° state. The results indicate that the structure of aircraft rudder has a significant impact on the RCS characteristics of the whole aircraft.","PeriodicalId":54566,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering","volume":"72 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135247426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation on the sandwich aircraft lift surface structural layout with a prefabricated hexagonal cellular core strength characteristics 预制六角形蜂窝芯夹层飞机升力面结构布局强度特性研究
4区 工程技术
Kolpakov Andrey Mikhailovich, Korolskii Vladislav Valentinovich, Grigorovich Oleg Dmitrievich, Khchoyan Ruben Seyranovich, None Dolgov Oleg Sergeevich, None Nazarov Egor Vadimovich, Vasiliev Sergei Leonidovich
{"title":"Investigation on the sandwich aircraft lift surface structural layout with a prefabricated hexagonal cellular core strength characteristics","authors":"Kolpakov Andrey Mikhailovich, Korolskii Vladislav Valentinovich, Grigorovich Oleg Dmitrievich, Khchoyan Ruben Seyranovich, None Dolgov Oleg Sergeevich, None Nazarov Egor Vadimovich, Vasiliev Sergei Leonidovich","doi":"10.1177/09544100231204977","DOIUrl":"https://doi.org/10.1177/09544100231204977","url":null,"abstract":"The possibility of using a new type of core structure for the aircraft lift surface, which is an alternative to the conventional structural layout, was reviewed. The study was carried out using the rudder of the ultralight aircraft \"MC-15 Cri-Cri\" as the example. A comprehensive comparative analysis of the prototype design with the proposed alternative option was made. The analysis of the studied structural layout variants strength characteristics was carried out using FEM calculations due to the complexity of the geometric shape of the proposed alternative. The prospects of using a prefabricated faceted core structure instead of the classical structural layout of the aircraft lift surface were revealed.","PeriodicalId":54566,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering","volume":"2015 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135247918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on the combined influence of aerodynamic sweep and casing treatment in a transonic compressor rotor 跨声速压气机转子气动后掠与机匣处理的综合影响研究
4区 工程技术
Zhidong Chi, Wuli Chu, Haoguang Zhang
{"title":"Study on the combined influence of aerodynamic sweep and casing treatment in a transonic compressor rotor","authors":"Zhidong Chi, Wuli Chu, Haoguang Zhang","doi":"10.1177/09544100231203409","DOIUrl":"https://doi.org/10.1177/09544100231203409","url":null,"abstract":"Casing treatment and three-dimensional blade design are effective techniques to remedy the deficiency of compressor stability margin, yet their combined effects on compressor performance are seldom studied. With the help of URANS simulations, this paper explored the combined influence of aerodynamic sweep and casing treatment in a transonic compressor rotor. Compared with the configurations of single sweep and single casing treatment, the combined configuration presented an outstanding advantage for improving compressor performance. For compressor overall performance, the stall margin improvement of combined configuration was up to 11.8%, larger than single forward sweep and single casing treatment. Meanwhile, peak efficiency penalty of combined configuration (−1.02%) was significantly lower than that of single casing treatment. Under the effect of casing treatment, the results showed that the pulsating axial velocity could effectively delay the interface of the tip leakage flow and main flow, preventing the overflow of tip leakage flow. The distributions of blockage coefficient and loading coefficient indicated that combined configuration was more effective due to tip unload by casing treatment and blockage resistance ability by forward sweep. Furthermore, the spatial and temporal evolutions of axial velocity at slot opening surface were discussed in detail. Compared with the single casing treatment, higher positive axial velocity excitation and smaller range of negative axial velocity were introduced by combined configuration, which contributed to better stability enhancement.","PeriodicalId":54566,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering","volume":"39 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134885096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal leading-edge deflection for flapping airfoil propulsion 扑翼型推进的最佳前缘偏转
4区 工程技术
Emanuel A.R. Camacho, André R.R. Silva, Flávio D. Marques
{"title":"Optimal leading-edge deflection for flapping airfoil propulsion","authors":"Emanuel A.R. Camacho, André R.R. Silva, Flávio D. Marques","doi":"10.1177/09544100231201553","DOIUrl":"https://doi.org/10.1177/09544100231201553","url":null,"abstract":"The aerodynamics of oscillating airfoils are crucial to understanding subjects such as rotor dynamics and bio-inspired flows. Unsteady airfoils have been studied extensively, but there is an overall lack of knowledge regarding newer and more complex kinematics. The present paper builds upon our modified version of the NACA0012 by numerically comparing its way of flapping with the standard flapping that is common in the literature. The comparison is conducted parametrically at a Reynolds number of 10 4 for two nondimensional amplitudes. Then, using a gradient-based optimization method, we search for pitching amplitudes that maximize the propulsive power and efficiency for both flapping modes. Results indicate that the proposed flapping methodology is more promising than conventional flapping, with thrust increases up to approximately 40%. Furthermore, the proposed mechanism achieves maximum propulsive power with near-optimal efficiency, a common limitation of traditional flapping airfoils.","PeriodicalId":54566,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering","volume":"44 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134885975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信