{"title":"Research progress of metal-based additive manufacturing in medical implants","authors":"Yun Zhai, Hao Zhang, Jianchuan Wang, Dewei Zhao","doi":"10.1515/rams-2023-0148","DOIUrl":"https://doi.org/10.1515/rams-2023-0148","url":null,"abstract":"Metal-based additive manufacturing has gained significant attention in the field of medical implants over the past decade. The application of 3D-printing technology in medical implants offers several advantages over traditional manufacturing methods, including increased design flexibility for implant customization, reduced lead time for emergency cases, and the ability to create complex geometry shapes for patient-specific implants. In this review study, the working principles and conditions of metal 3D-printing technologies such as selective laser sintering, selective laser melting, and electron beam melting, as well as their applications and advantages in the medical field, are investigated in detail. The application scenarios and research status of non-degradable metals including titanium alloy, medical stainless steel, <jats:italic>etc.,</jats:italic> and degradable metals like magnesium alloy are introduced as printing materials. We discuss the improvement of mechanical properties and biocompatibility of implants through surface modification, porous structure design, and the optimization of molding processes. Finally, the biocompatibility issues and challenges caused by the accuracy of CT imaging, fabrication, implant placement, and other aspects are summarized.","PeriodicalId":54484,"journal":{"name":"Reviews on Advanced Materials Science","volume":"1 5","pages":""},"PeriodicalIF":3.6,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138524607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Norah Salem Alsaiari, Majed Salem Alsaiari, Fatimah Mohammed Alzahrani, Abdelfattah Amari, Mohamed A. Tahoon
{"title":"Synthesis, characterization, and application of the novel nanomagnet adsorbent for the removal of Cr(vi) ions","authors":"Norah Salem Alsaiari, Majed Salem Alsaiari, Fatimah Mohammed Alzahrani, Abdelfattah Amari, Mohamed A. Tahoon","doi":"10.1515/rams-2023-0145","DOIUrl":"https://doi.org/10.1515/rams-2023-0145","url":null,"abstract":"The synthesis of an efficient adsorbent to remove chromium ions from water is challenging. Therefore, in this study, a new nanomagnet composite (Fe<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub>/biochar/ZIF-8) was synthesized by a one-pot hydrothermal method using a metal–organic framework (MOF, ZIF-8) as a sacrificial template, citrus peels as a source of biochar, and iron oxide nanoparticles for magnetization. The synthesized nanocomposite showed a high efficiency toward the adsorption of Cr(<jats:sc>vi</jats:sc>) ions. The adsorption study showed that the experimental data were well-described using the Langmuir isotherm model and pseudo-second-order model. According to the Langmuir model, the adsorption capacities toward Cr(<jats:sc>vi</jats:sc>) adsorption were 77 and 125 mg·g<jats:sup>−1</jats:sup> for Fe<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub>/biochar and Fe<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub>/biochar/ZIF-8, respectively, indicating the role of MOF in improving the adsorption performance. The Fe<jats:sub>3</jats:sub>O<jats:sub>4</jats:sub>/biochar/ZIF-8 showed an excellent adsorption performance in the presence of coexisting ions at a wide pH range using different eluents to study reusability up to five successive cycles. We can conclude from this study that this nanoadsorbent is a promising material for removing pollutants from environmental water samples.","PeriodicalId":54484,"journal":{"name":"Reviews on Advanced Materials Science","volume":"1 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138524605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chuangmin Li, Zhuangzhuang Li, Youwei Gan, Qinhao Deng
{"title":"Optimization and characterization of composite modified asphalt with pyrolytic carbon black and chicken feather fiber","authors":"Chuangmin Li, Zhuangzhuang Li, Youwei Gan, Qinhao Deng","doi":"10.1515/rams-2023-0143","DOIUrl":"https://doi.org/10.1515/rams-2023-0143","url":null,"abstract":"Asphalt is a vital construction material for roads, and its properties can be enhanced by modification. In this study, a composite modified asphalt was developed using pyrolytic carbon black (PCB) and chicken feather fiber (CFF). Box–Behnken design of response surface methodology was employed to optimize the preparation parameters, and the optimal parameters were determined to be a PCB dosage of 15% (weight ratio), a CFF dosage of 0.3% (weight ratio), and a chicken feather (CF) shear time of 8.2 min. A Dynamic Shear Rheometer (MCR302) was used to analyze the high-temperature rheological properties of the modified asphalt samples, and the results showed that the addition of PCB and CFF enhanced the high temperature performance and anti-aging performance of the asphalt. The rheological properties at high temperature increased progressively with the increase in CFF dosage. The Bending Beam Rheometer (BBR) test was conducted to evaluate the low-temperature rheological property of PCB/CFF composite modified asphalt, which was observed to decrease with the increase in CFF dosage. The microscopic properties and the chemical group of 15% PCB + 0.3% CFF with 8.2 min CF shear time composite modified asphalt (0.3%PC-MA) were analyzed using Fourier Transform Infrared spectrometer and Fluorescence Microscopy, and the results indicated that PCB and CFF were physically blended with asphalt without undergoing a chemical reaction, and they were well compatible with and evenly distributed in asphalt. Finally, the high- and low-temperature performances, as well as water stability, of the base asphalt (BA), 15% PCB dosage modified asphalt (P-MA), and 15% PCB dosage modified asphalt with <jats:italic>x</jats:italic>% CFF dosage with a shear time of 8.2 min (PC-MA) were compared. The addition of CFF significantly enhanced the high-temperature and low-temperature performances, as well as water stability of P-MA mixtures. The aim of this study is to provide a laboratory test basis for the application of PCB/CFF composite modified asphalt.","PeriodicalId":54484,"journal":{"name":"Reviews on Advanced Materials Science","volume":"45 15","pages":""},"PeriodicalIF":3.6,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138513695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A simulation modeling methodology considering random multiple shots for shot peening process","authors":"Hanjun Gao, Minghui Lin, Jing Guo, Liang Yang, Qiong Wu, Ziliang Ran, Nianpu Xue","doi":"10.1515/rams-2022-0304","DOIUrl":"https://doi.org/10.1515/rams-2022-0304","url":null,"abstract":"Shot peening (SP) process is a typical surface strengthening process for metal and metal matrix composites, which can significantly improve the fatigue life and strength. The traditional SP simulation model falls short as it only takes into account one or a few shots, proving insufficient for accurately simulating the entire impact process involving hundreds of shots. In this study, a random multiple shots simulation modeling methodology with hundreds of random shots is proposed to simulate the impact process of SP. In order to reduce the simulation error, the random function Rand of MATLAB is used to generate the shot distributions many times, and the shot distribution closest to the average number is selected and the three-dimension parametric explicit dynamics numerical simulation model is built using ABAQUS software. Orthogonal experiments are carried out to investigate the influences of shot diameter, incident impact velocity, and angle on the residual stress distribution, roughness, and specimen deformation. Results showed that the average relative errors of maximum residual compressive stress, roughness, and deformation of specimen between simulation model and experimental value are 30.99, 16.14, and 16.73%, respectively. The primary factors affecting residual stress and deformation is shot diameter, and the main factor affecting roughness is impact velocity.","PeriodicalId":54484,"journal":{"name":"Reviews on Advanced Materials Science","volume":"44 23","pages":""},"PeriodicalIF":3.6,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138513696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maciej Jarzębski, Marek Wieruszewski, Mikołaj Kościński, Tomasz Rogoziński, Joanna Kobus-Cisowska, Tomasz Szablewski, Joanna Perła-Kaján, Katarzyna Waszkowiak, Jarosław Jakubowicz
{"title":"Heme iron as potential iron fortifier for food application – characterization by material techniques","authors":"Maciej Jarzębski, Marek Wieruszewski, Mikołaj Kościński, Tomasz Rogoziński, Joanna Kobus-Cisowska, Tomasz Szablewski, Joanna Perła-Kaján, Katarzyna Waszkowiak, Jarosław Jakubowicz","doi":"10.1515/rams-2023-0128","DOIUrl":"https://doi.org/10.1515/rams-2023-0128","url":null,"abstract":"The modern food industry requires new analytical methods for high-demand food supplements, personalized diets, or bioactive foods development. One of the main goals of the food industry is to discover new ways of food fortification. This applies to food products or supplements for human and animal diets. In our research, we focused on the solid particles of AproTHEM (dried porcine hemoglobin), which is approved for animal feeding and as a meat product additive, and AproFER 1000 (heme iron polypeptides), which is still being investigated. The study showed the possible application of advanced techniques for the examination of iron-based food additives. We evaluated selected techniques for particle size and morphology examination such as laser diffraction, optical microscopy, as well as scanning electron microscopy, and briefly discussed their usefulness compared with other techniques. On the basis of our results, we proposed a path of microscopic analysis for the study of material homogeneity. The structure of heme iron was evaluated by X-ray diffraction, FT-IR, and Raman spectroscopy supported with thermal behavior analysis (differential scanning calorimeter). Furthermore, a portable colorimeter was applied for <jats:italic>L</jats:italic>*<jats:italic>a</jats:italic>*<jats:italic>b</jats:italic>* color analysis. Our study proved that for new food product development, particle size analysis as well as typically used advanced materials techniques can be successfully applied.","PeriodicalId":54484,"journal":{"name":"Reviews on Advanced Materials Science","volume":"45 19","pages":""},"PeriodicalIF":3.6,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138513694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of rare earth Nd on the microstructural transformation and mechanical properties of 7xxx series aluminum alloys","authors":"Jianpeng Hao, Liangming Yan, Y. Dai","doi":"10.1515/rams-2023-0345","DOIUrl":"https://doi.org/10.1515/rams-2023-0345","url":null,"abstract":"Abstract Al–Zn–Mg–Cu–Zr aluminum alloys have shown promise as materials for drill pipes; however, their application temperature is limited to below 120°C. This study investigates the influence of incorporating the rare earth element Nd on the microstructure and mechanical properties of Al–Zn–Mg–Cu–Zr alloys. The microstructural evolution during casting, homogenization, hot deformation, and heat treatment processes is characterized using optical microscopy and scanning electron microscopy. The composition of the rare earth phase is determined through transmission electron microscopy (TEM). Furthermore, first-principles calculations are employed to determine the formation enthalpy, cohesive energy, shear modulus, bulk modulus, Young’s modulus, and Poisson’s ratio of bulk Al8Cu4Nd. The effect of Nd addition on the mechanical properties of the alloy is investigated through hardness and tensile testing. The results indicate that the addition of Nd significantly refines the grain and dendrite sizes of the alloy and effectively suppresses recrystallization behavior during hot extrusion and solution treatment. TEM observations reveal the presence of micrometer-sized blocky Al8Cu4Nd phases and nanometer-sized Al3Nd phases. The Al3Nd phases are located near dislocations, hindering dislocation movement and thus enhancing the alloy’s mechanical properties. First-principles calculations demonstrate that the bulk Al8Cu4Nd phase exhibits superior structural stability, deformation resistance, and brittle characteristics, which negatively impact the ductility of the alloy. The alloy with Nd addition can maintain a high hardness value for an extended period at high temperature, and the tensile strength of the alloy with 0.26 wt% Nd addition reaches 396.2 MPa at 120°C. These results indicate that the rare earth element Nd can improve the high-temperature mechanical properties of the alloy.","PeriodicalId":54484,"journal":{"name":"Reviews on Advanced Materials Science","volume":"3 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72661938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yunpeng Hu, W. Feng, Wenbin Li, Xiaoyuan Yi, Kan Liu, Longzhen Ye, Jiachen Zhao, Xianjing Lu, Ruichao Zhang
{"title":"Morphological classification method and data-driven estimation of the joint roughness coefficient by consideration of two-order asperity","authors":"Yunpeng Hu, W. Feng, Wenbin Li, Xiaoyuan Yi, Kan Liu, Longzhen Ye, Jiachen Zhao, Xianjing Lu, Ruichao Zhang","doi":"10.1515/rams-2022-0336","DOIUrl":"https://doi.org/10.1515/rams-2022-0336","url":null,"abstract":"Abstract The roughness of the joint surface plays a significant role in evaluating the shear strength of rock. The waviness (first-order) and unevenness (second-order) of natural joints have different effects on the characterization of joint surface roughness. To accurately quantify the influence of the two-order asperity on the joint roughness coefficient (JRC) prediction of joint surface profile curve, the optimal sampling interval of the asperity was determined through the change of the R p {R}_{{rm{p}}} value of the joint surface profile curve. The separation of the two-order asperity of 48 joint surface profile curves was completed at the optimal sampling interval, and morphological parameters of the asperity such as i ave {i}_{{rm{ave}}} , R max {R}_{{rm{max }}} , and R p {R}_{{rm{p}}} were counted from three aspects: asperity angle of the profile curve, asperity degree, and the trace length. Based on the statistical results of the morphological parameters considering the two-order asperity, the new nonlinear prediction models were proposed. The results showed that the curve slope mutation point SI = 2 mm is the optimal separation distance of the two-order asperity of the joint surface profile curve. The refined separation method that considers the waviness and unevenness of morphological parameters can characterize the detailed morphological features of the joint surface in more dimensions. The support vector regression (SVR) and random forest (RF) models that take into account a two-order asperity separated results have higher accuracy than traditional models. The prediction accuracy has improved by 7–8% in SVR model compared with SVR(SO) and RF(SO). The SVR nonlinear model that considering separation of two-orders of joint surface roughness is more suitable for the prediction of JRC.","PeriodicalId":54484,"journal":{"name":"Reviews on Advanced Materials Science","volume":"39 14","pages":""},"PeriodicalIF":3.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72411506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
W. Smułek, Aleksandra Makiej, M. Jarzębski, A. Zdarta, Magdalena Jeszka-Skowron, F. Ciesielczyk, T. Jesionowski, J. Zdarta, E. Kaczorek
{"title":"Nanoemulsions of essential oils stabilized with saponins exhibiting antibacterial and antioxidative properties","authors":"W. Smułek, Aleksandra Makiej, M. Jarzębski, A. Zdarta, Magdalena Jeszka-Skowron, F. Ciesielczyk, T. Jesionowski, J. Zdarta, E. Kaczorek","doi":"10.1515/rams-2022-0337","DOIUrl":"https://doi.org/10.1515/rams-2022-0337","url":null,"abstract":"Abstract Functional foods, drug delivery systems, and cosmetics are the main areas of application for multiphase systems, where the use of naturally derived compounds is preferred. Hence, this study aimed to assess the possibility of using natural surfactants and saponin-rich extracts to produce emulsions containing antibacterial and antioxidant cinnamon and clove essential oils (EOs). The analyses of nanoparticles using dynamic light scattering showed that the addition of plant extracts to solutions allows one to obtain stable emulsions and decreased zeta potential (< −40 mV) and droplet size (<200 nm). In all investigated emulsions, the increase of antioxidative properties was observed when both EOs and plant extracts were used. The emulsion with clove oil stabilized with Quillaja saponaria bark saponins has the highest combined antioxidative properties (3.55 ± 0.01 μg gallic acid equivalent per g). Additionally, a stronger antibacterial action against Pseudomonas bacteria was observed for clove oil with Quillaja saponaria and cinnamon oil with Glycyrrhiza glabra. In addition, plant extracts did not affect significantly the other properties of the oil emulsions, e.g. wettability, colour, and refractive index. All results show that the proposed emulsions can be helpful in the preparation of multifunctional emulsions, where the co-action of saponins and EOs is especially beneficial.","PeriodicalId":54484,"journal":{"name":"Reviews on Advanced Materials Science","volume":"13 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74605710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiao Hu, Li Xie, Zhenlin Chen, Pengcheng Lei, Hao Chen, Tao Tan
{"title":"Study on the uniaxial compression constitutive relationship of modified yellow mud from minority dwelling in western Sichuan, China","authors":"Xiao Hu, Li Xie, Zhenlin Chen, Pengcheng Lei, Hao Chen, Tao Tan","doi":"10.1515/rams-2022-0291","DOIUrl":"https://doi.org/10.1515/rams-2022-0291","url":null,"abstract":"Abstract More than 2 billion people around the world still use raw earth architecture, in countries like Nepal, India, and Iran. In China, the proportion of people living in earthen structures rose to 36%, some of them in western Sichuan. Minority dwellings in western Sichuan, China, use local stone and yellow mud as building materials and have been used for thousands of years. Because yellow mud is a brittle material with poor mechanical properties, and because the region is prone to earthquakes, the walls are highly susceptible to damage under seismic action. To improve the mechanical properties of yellow mud, the yellow mud of Taoping Qiang Village in western Sichuan was studied and modified. Uniaxial compressive tests were conducted on the modified specimens, and the existing ontogenetic equations of raw soil-based materials were analyzed and optimized. Finally, we developed the constitutive models for yellow clay and modified yellow clay in the western Sichuan area, which can be used for different kinds of modified materials through the variation of parameters. The results show that the compressive strength of yellow clay is improved by adding the modified materials. The optimized constitutive model can better fit the test curves, which can provide a basis for theoretical calculations and seismic mitigation of minority residential structures in western Sichuan or similar structural systems.","PeriodicalId":54484,"journal":{"name":"Reviews on Advanced Materials Science","volume":"49 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76648963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Gaff, Ivan Kubovský, Adam Sikora, D. Kačíková, Haitao Li, Matúš Kubovský, F. Kačík
{"title":"Impact of thermal modification on color and chemical changes of African padauk, merbau, mahogany, and iroko wood species","authors":"M. Gaff, Ivan Kubovský, Adam Sikora, D. Kačíková, Haitao Li, Matúš Kubovský, F. Kačík","doi":"10.1515/rams-2022-0277","DOIUrl":"https://doi.org/10.1515/rams-2022-0277","url":null,"abstract":"Abstract Thermal modification is an environment-friendly technology for improving various wood properties, especially the dimensional stability, decay resistance, and color homogeneity. In this work, four tropical wood species (African padauk, merbau, mahogany, and iroko) were thermally modified by the ThermoWood process. The influence of heat treatment on the color and chemical changes of wood was studied by spectrophotometry, Fourier transform infrared (FTIR) spectroscopy, and wet chemistry methods. As the temperature increased, a decrease in lightness (L*) and a simultaneous decrease in chromatic values (a*, b*) were observed, indicating darkening and browning of the wood surface. As a result of the heat treatment, the relative content of hemicelluloses decreased the most in merbau and mahogany, while the thermal stability of iroko and African padauk was higher. All examined wood species showed a strong correlation between the lightness difference value (ΔL*) and the content of hemicelluloses (r = 0.88–0.96). The FTIR spectroscopy showed that the breakdown of C═O and C═C bonds in hemicelluloses and lignin plays an important role in the formation of chromophoric structures responsible for the color changes in the wood.","PeriodicalId":54484,"journal":{"name":"Reviews on Advanced Materials Science","volume":"48 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78574384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}