{"title":"Effect of rare earth Nd on the microstructural transformation and mechanical properties of 7xxx series aluminum alloys","authors":"Jianpeng Hao, Liangming Yan, Y. Dai","doi":"10.1515/rams-2023-0345","DOIUrl":"https://doi.org/10.1515/rams-2023-0345","url":null,"abstract":"Abstract Al–Zn–Mg–Cu–Zr aluminum alloys have shown promise as materials for drill pipes; however, their application temperature is limited to below 120°C. This study investigates the influence of incorporating the rare earth element Nd on the microstructure and mechanical properties of Al–Zn–Mg–Cu–Zr alloys. The microstructural evolution during casting, homogenization, hot deformation, and heat treatment processes is characterized using optical microscopy and scanning electron microscopy. The composition of the rare earth phase is determined through transmission electron microscopy (TEM). Furthermore, first-principles calculations are employed to determine the formation enthalpy, cohesive energy, shear modulus, bulk modulus, Young’s modulus, and Poisson’s ratio of bulk Al8Cu4Nd. The effect of Nd addition on the mechanical properties of the alloy is investigated through hardness and tensile testing. The results indicate that the addition of Nd significantly refines the grain and dendrite sizes of the alloy and effectively suppresses recrystallization behavior during hot extrusion and solution treatment. TEM observations reveal the presence of micrometer-sized blocky Al8Cu4Nd phases and nanometer-sized Al3Nd phases. The Al3Nd phases are located near dislocations, hindering dislocation movement and thus enhancing the alloy’s mechanical properties. First-principles calculations demonstrate that the bulk Al8Cu4Nd phase exhibits superior structural stability, deformation resistance, and brittle characteristics, which negatively impact the ductility of the alloy. The alloy with Nd addition can maintain a high hardness value for an extended period at high temperature, and the tensile strength of the alloy with 0.26 wt% Nd addition reaches 396.2 MPa at 120°C. These results indicate that the rare earth element Nd can improve the high-temperature mechanical properties of the alloy.","PeriodicalId":54484,"journal":{"name":"Reviews on Advanced Materials Science","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72661938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Gaff, Ivan Kubovský, Adam Sikora, D. Kačíková, Haitao Li, Matúš Kubovský, F. Kačík
{"title":"Impact of thermal modification on color and chemical changes of African padauk, merbau, mahogany, and iroko wood species","authors":"M. Gaff, Ivan Kubovský, Adam Sikora, D. Kačíková, Haitao Li, Matúš Kubovský, F. Kačík","doi":"10.1515/rams-2022-0277","DOIUrl":"https://doi.org/10.1515/rams-2022-0277","url":null,"abstract":"Abstract Thermal modification is an environment-friendly technology for improving various wood properties, especially the dimensional stability, decay resistance, and color homogeneity. In this work, four tropical wood species (African padauk, merbau, mahogany, and iroko) were thermally modified by the ThermoWood process. The influence of heat treatment on the color and chemical changes of wood was studied by spectrophotometry, Fourier transform infrared (FTIR) spectroscopy, and wet chemistry methods. As the temperature increased, a decrease in lightness (L*) and a simultaneous decrease in chromatic values (a*, b*) were observed, indicating darkening and browning of the wood surface. As a result of the heat treatment, the relative content of hemicelluloses decreased the most in merbau and mahogany, while the thermal stability of iroko and African padauk was higher. All examined wood species showed a strong correlation between the lightness difference value (ΔL*) and the content of hemicelluloses (r = 0.88–0.96). The FTIR spectroscopy showed that the breakdown of C═O and C═C bonds in hemicelluloses and lignin plays an important role in the formation of chromophoric structures responsible for the color changes in the wood.","PeriodicalId":54484,"journal":{"name":"Reviews on Advanced Materials Science","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78574384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yongtao Gao, Bin Wang, Qiang Xu, Changjiang Liu, D. Hui, W. Yuan, Haifeng Tang, Jian-jun Zhao
{"title":"Experimental study on recycled steel fiber-reinforced concrete under repeated impact","authors":"Yongtao Gao, Bin Wang, Qiang Xu, Changjiang Liu, D. Hui, W. Yuan, Haifeng Tang, Jian-jun Zhao","doi":"10.1515/rams-2022-0312","DOIUrl":"https://doi.org/10.1515/rams-2022-0312","url":null,"abstract":"Abstract Recycled steel fiber comes from the waste produced by machining. Adding recycled steel fiber into concrete can significantly enhance the toughness of concrete. In order to study the impact toughness of recycled steel fiber-reinforced concrete, the drop weight repeated impact experiment method was used to study the performance of recycled steel fiber-reinforced concrete under repeated impact load. Four kinds of recycled steel fiber-reinforced concrete samples with different volume contents were designed and made, and the loading impact experiments under five working conditions were carried out. Taking the drop weight and drop height as changing parameters, the corresponding blow counts of the first crack and sample failure under the impact of the drop hammer are recorded, and the ductility coefficients of different samples are calculated. The results show that the impact resistance of the sample decreases significantly with the increase of the drop weight and drop height. With the increase of recycled steel fiber content, the impact toughness of the sample increases obviously. The impact toughness of recycled steel fiber-reinforced concrete under standard loading conditions is the best.","PeriodicalId":54484,"journal":{"name":"Reviews on Advanced Materials Science","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80797797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiao Hu, Li Xie, Zhenlin Chen, Pengcheng Lei, Hao Chen, Tao Tan
{"title":"Study on the uniaxial compression constitutive relationship of modified yellow mud from minority dwelling in western Sichuan, China","authors":"Xiao Hu, Li Xie, Zhenlin Chen, Pengcheng Lei, Hao Chen, Tao Tan","doi":"10.1515/rams-2022-0291","DOIUrl":"https://doi.org/10.1515/rams-2022-0291","url":null,"abstract":"Abstract More than 2 billion people around the world still use raw earth architecture, in countries like Nepal, India, and Iran. In China, the proportion of people living in earthen structures rose to 36%, some of them in western Sichuan. Minority dwellings in western Sichuan, China, use local stone and yellow mud as building materials and have been used for thousands of years. Because yellow mud is a brittle material with poor mechanical properties, and because the region is prone to earthquakes, the walls are highly susceptible to damage under seismic action. To improve the mechanical properties of yellow mud, the yellow mud of Taoping Qiang Village in western Sichuan was studied and modified. Uniaxial compressive tests were conducted on the modified specimens, and the existing ontogenetic equations of raw soil-based materials were analyzed and optimized. Finally, we developed the constitutive models for yellow clay and modified yellow clay in the western Sichuan area, which can be used for different kinds of modified materials through the variation of parameters. The results show that the compressive strength of yellow clay is improved by adding the modified materials. The optimized constitutive model can better fit the test curves, which can provide a basis for theoretical calculations and seismic mitigation of minority residential structures in western Sichuan or similar structural systems.","PeriodicalId":54484,"journal":{"name":"Reviews on Advanced Materials Science","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76648963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A semi-empirical model for predicting carbonation depth of RAC under two-dimensional conditions","authors":"Jian Wang, Yawei Ma","doi":"10.1515/rams-2023-0115","DOIUrl":"https://doi.org/10.1515/rams-2023-0115","url":null,"abstract":"Abstract Recycled aggregate concrete has been widely used in practical engineering construction, and the carbonation resistance of buildings within their allowable strength range is currently urgently needed to be considered. By constructing a time prediction model for the carbonation depth of recycled concrete, the time when the complete carbonation zone reaches the depth of the steel bar inside the concrete can be determined, and then the carbonation life of the building can be determined. However, the current carbonation model for recycled aggregates (RAs) has theoretical and practical limitations. The existing semi-empirical model has not quantitatively considered the influence of particle sizes of RAs on the carbonation depth, but only qualitatively analyzed the effect of particle size on the carbonation depth. In practical applications, the existing models usually only determine the structural life under one-dimensional carbonation conditions in laboratory conditions, ignoring the fact that two-dimensional carbonation mainly occurs in actual engineering. In order to overcome these limitations, a semi-empirical model for predicting the carbonation depth of recycled concrete is proposed for life prediction of structural carbonation. Based on the replacement rate of RAs, external environmental influences, and the stress state of components, the particle size of RAs is considered in the carbonation depth prediction model, and model parameters are fitted by performing carbonation experiments on specimens with different mix ratios. The model is then validated by applying a large amount of existing experimental data to the fitted model, and the results show that the model has good applicability for the constructed components. Furthermore, the model is used to predict the carbonation life of the main components in actual engineering and considers two-dimensional carbonation. It was found that when the replacement rate of RAs was 40%, the predicted life of the main components after carbonation in actual engineering was close to the design life.","PeriodicalId":54484,"journal":{"name":"Reviews on Advanced Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135799562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Blending and functionalisation modification of 3D printed polylactic acid for fused deposition modeling","authors":"Yishan Li, Lijie Huang, Xiyue Wang, Yanan Wang, Xuyang Lu, Zhehao Wei, Qi Mo, Yao Sheng, Shuya Zhang, Chongxing Huang, Qingshan Duan","doi":"10.1515/rams-2023-0140","DOIUrl":"https://doi.org/10.1515/rams-2023-0140","url":null,"abstract":"Abstract Polylactic acid (PLA) is extensively used as a raw material in fused deposition modeling (FDM)-based three-dimensional printing (3DP), owing to its abundant resources, simple production processes, decent biodegradability, and adequate mechanical strength. However, it has disadvantages such as poor toughness and straightforward bending deformation. Given the considerable application potential of PLA materials in FDM-based 3DP technology, herein, studies conducted over the last 5 years toward the enhancement of the characteristics of PLA for FDM are summarized. In particular, modification approaches (chemical or physical methods) that have been employed to improve the mechanical and processing attributes of PLA are discussed, along with the development of PLA composites with unique functionalities. The insights provided herein can help expand the scope of application of PLA composites in FDM-based 3DP for utilization in fields such as transportation, aerospace engineering, industrial equipment fabrication, consumer/electronic product manufacturing, and biomedicine/medicine.","PeriodicalId":54484,"journal":{"name":"Reviews on Advanced Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135660505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Damage constitutive model of jointed rock mass considering structural features and load effect","authors":"Bing Sun, Peng Yang, Yu Luo, Bo Deng, Sheng Zeng","doi":"10.1515/rams-2023-0129","DOIUrl":"https://doi.org/10.1515/rams-2023-0129","url":null,"abstract":"Abstract Rock masses in underground engineering are usually damaged, which are caused by rock genesis and environmental stress. Studying the constitutive relationship between rock strength and deformation under loading is crucial for the design and evaluation of such scenarios. The new damage constitutive model considering the dynamic change of joint damage was developed to describe the behavior of rocks under loading in this work. First, considering the influence of jointed rock mass structural features in their entirety, the Drucker–Prager criterion and the Hoek–Brown criterion were combined. Second, based on the idea of macro–micro coupling, the calculation formulae of damage variables were derived. Finally, the damage constitutive model of the jointed rock mass was established, and the proposed model was fitted and compared with the test data. Results show that the variation rules for damage value and peak strength are opposite, and the stress–strain is highly sensitive to changes in the parameter s of the model. Moreover, the proposed model can accurately describe the effect of joint deterioration on the entire process of rock mass compression failure, which shows that the damage constitutive models are useful for evaluating the strength characteristics of jointed rock mass in engineering practice.","PeriodicalId":54484,"journal":{"name":"Reviews on Advanced Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136373085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hu Shao, Jianya Tang, Wenzheng He, Shuang Huang, Tengjiang Yu
{"title":"Study on aging mechanism of SBS/SBR compound-modified asphalt based on molecular dynamics","authors":"Hu Shao, Jianya Tang, Wenzheng He, Shuang Huang, Tengjiang Yu","doi":"10.1515/rams-2023-0106","DOIUrl":"https://doi.org/10.1515/rams-2023-0106","url":null,"abstract":"Abstract Component ratio change is considered to be the main reason leading to the deterioration of asphalt properties, but there are few studies on the aging mechanism from the perspective of modifier molecules. To reveal the aging mechanism of styrene–butadiene–styrene block copolymer (SBS)/styrene butadiene rubber (SBR) compound-modified asphalt, the micro mechanism in the aging process was studied by combining molecular dynamics (MD) and Fourier transform infrared spectroscopy (FTIR). First, MD was used to establish the micro models of SBS/SBR compound-modified asphalt at different aging stages (non-aging, short-term aging, and long-term aging) and to verify its rationality. Second, the micro characteristics of the SBS/SBR compound-modified asphalt micro model, such as solubility parameters, diffusion coefficient, interface interaction energy, and radial distribution function, were analyzed by calculation. Finally, the FTIR results proved the rationality of the simulation and explained the aging mechanism of SBS/SBR compound-modified asphalt. The results show that the cohesiveness density and solubility parameters of SBS/SBR compound-modified asphalt increase, the diffusion coefficient decreases, and the molecular interface stability increases during the aging process. And, the carbonyl index, sulfoxide index, and aromatic ring index increased in different degrees after aging. The study explains the aging mechanism of SBS/SBR compound-modified asphalt from the perspective of modifier molecules and provides a theoretical basis for the research of asphalt anti-aging.","PeriodicalId":54484,"journal":{"name":"Reviews on Advanced Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136078758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Research progress on properties of cement-based composites incorporating graphene oxide","authors":"Peng Zhang, Yaowen Sun, Jiandong Wei, Tian-hang Zhang","doi":"10.1515/rams-2022-0329","DOIUrl":"https://doi.org/10.1515/rams-2022-0329","url":null,"abstract":"Abstract Graphene oxide (GO) is a two-dimensional derivative of graphene material, with carboxy, hydroxy group functional groups at the middle of the sheets, and oxygen-containing functional groups at sheet edges. It has multiple advantages, such as high strength, hydrophilicity, and strong reactivity. With the development of construction materials, GO has been widely used as a nano-reinforced material in cement-based composites (CBCs). Based on a large amount of relevant literature, the preparation and dispersion behavior of GO-reinforced CBC are summarized. Besides, the impact of GO on the workability, volume stability, mechanical performance, and durability of CBC are discussed. Moreover, the influencing mechanism of GO on the hydration of CBC is expounded. From the findings of this review, the following conclusions can be drawn: the fluidity of CBC will be decreased when GO is evenly dispersed in the cement slurry, which results in a loss of workability of CBC. Meanwhile, the addition of GO improves the volume stability of CBC, while the tensile, compressive, and flexural strengths are all improved to varying degrees. The improvement of GO on the durability of CBC is mainly reflected in the corrosion resistance and permeability resistance. In addition, problems existing in the current research are summarized and future perspectives are put forward. The review work in this article could offer important guidance for further research and implementation of GO-doped CBC in practical engineering.","PeriodicalId":54484,"journal":{"name":"Reviews on Advanced Materials Science","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85299771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Color match evaluation using instrumental method for three single-shade resin composites before and after in-office bleaching","authors":"Aylin Çilingir, Engin Kariper","doi":"10.1515/rams-2022-0334","DOIUrl":"https://doi.org/10.1515/rams-2022-0334","url":null,"abstract":"Abstract The aim of this study is to evaluate the effect of an office bleaching agent on the color of various single-shade resin composites. Three single-shade resin composites were tested in this study. Thirty disk-shaped specimens were prepared with a diameter of 10 mm and a height of 1 mm, and they were divided into three groups (n = 10). After color measurements, 40% hydrogen peroxide containing bleaching agent gel was applied to all the specimens. Baseline and final color measurements were performed using a clinical spectrophotometer. Statistical analyses were performed. All bleached specimens had clinically incomprehensible color changes (ΔE < 3.3). Comparisons for single-shade composites revealed no statistically significant color difference between groups. With the limitation of this study in mind, color changes in single-shade resin-composites after office bleaching were found to be clinically acceptable. It may be appropriate to use single-shade composites that shorten the in-chair clinical time by facilitating shade selection.","PeriodicalId":54484,"journal":{"name":"Reviews on Advanced Materials Science","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80195191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}