Yongtao Gao, Bin Wang, Qiang Xu, Changjiang Liu, D. Hui, W. Yuan, Haifeng Tang, Jian-jun Zhao
{"title":"Experimental study on recycled steel fiber-reinforced concrete under repeated impact","authors":"Yongtao Gao, Bin Wang, Qiang Xu, Changjiang Liu, D. Hui, W. Yuan, Haifeng Tang, Jian-jun Zhao","doi":"10.1515/rams-2022-0312","DOIUrl":"https://doi.org/10.1515/rams-2022-0312","url":null,"abstract":"Abstract Recycled steel fiber comes from the waste produced by machining. Adding recycled steel fiber into concrete can significantly enhance the toughness of concrete. In order to study the impact toughness of recycled steel fiber-reinforced concrete, the drop weight repeated impact experiment method was used to study the performance of recycled steel fiber-reinforced concrete under repeated impact load. Four kinds of recycled steel fiber-reinforced concrete samples with different volume contents were designed and made, and the loading impact experiments under five working conditions were carried out. Taking the drop weight and drop height as changing parameters, the corresponding blow counts of the first crack and sample failure under the impact of the drop hammer are recorded, and the ductility coefficients of different samples are calculated. The results show that the impact resistance of the sample decreases significantly with the increase of the drop weight and drop height. With the increase of recycled steel fiber content, the impact toughness of the sample increases obviously. The impact toughness of recycled steel fiber-reinforced concrete under standard loading conditions is the best.","PeriodicalId":54484,"journal":{"name":"Reviews on Advanced Materials Science","volume":"1 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80797797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Experimental study on the seismic performance of short shear walls comprising cold-formed steel and high-strength reinforced concrete with concealed bracing","authors":"Min Gan, Yu Yu, Zhong-xian Wan","doi":"10.1515/rams-2023-0344","DOIUrl":"https://doi.org/10.1515/rams-2023-0344","url":null,"abstract":"Abstract This study investigates the seismic performance of a composite structure comprising cold-formed steel and high-strength concrete. Four short shear walls composed of cold-formed steel and high-strength concrete, namely, one specimen without diagonal bracing, one with angle-steel bracing, and two with lattice bracing, were designed for testing their low cyclic loading. The cracking load, ultimate displacement, maximum horizontal bearing capacity, failure process, hysteretic curve, and skeleton curve of the four specimens were obtained during the test. The results showed that the use of cold-formed steel-concealed bracing in the high-strength concrete short shear wall can effectively change the failure mode of the wall into bending shear failure with good ductility. An analysis of the energy dissipation of the four specimens revealed that the energy dissipation capacity and ductility of high-strength concrete short shear wall with cold-formed steel concealed bracing were improved, indicating that the use of cold-formed steel concealed bracing greatly improved the total energy dissipation capacity of high-strength concrete short shear wall. The calculated shear bearing capacity in the diagonal section of the wall with concealed bracing was compared with the measured one. Considering specifications, a formula for calculating the shear capacity in the oblique section of short shear wall with concealed bracing was proposed.","PeriodicalId":54484,"journal":{"name":"Reviews on Advanced Materials Science","volume":"114 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74415467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A semi-empirical model for predicting carbonation depth of RAC under two-dimensional conditions","authors":"Jian Wang, Yawei Ma","doi":"10.1515/rams-2023-0115","DOIUrl":"https://doi.org/10.1515/rams-2023-0115","url":null,"abstract":"Abstract Recycled aggregate concrete has been widely used in practical engineering construction, and the carbonation resistance of buildings within their allowable strength range is currently urgently needed to be considered. By constructing a time prediction model for the carbonation depth of recycled concrete, the time when the complete carbonation zone reaches the depth of the steel bar inside the concrete can be determined, and then the carbonation life of the building can be determined. However, the current carbonation model for recycled aggregates (RAs) has theoretical and practical limitations. The existing semi-empirical model has not quantitatively considered the influence of particle sizes of RAs on the carbonation depth, but only qualitatively analyzed the effect of particle size on the carbonation depth. In practical applications, the existing models usually only determine the structural life under one-dimensional carbonation conditions in laboratory conditions, ignoring the fact that two-dimensional carbonation mainly occurs in actual engineering. In order to overcome these limitations, a semi-empirical model for predicting the carbonation depth of recycled concrete is proposed for life prediction of structural carbonation. Based on the replacement rate of RAs, external environmental influences, and the stress state of components, the particle size of RAs is considered in the carbonation depth prediction model, and model parameters are fitted by performing carbonation experiments on specimens with different mix ratios. The model is then validated by applying a large amount of existing experimental data to the fitted model, and the results show that the model has good applicability for the constructed components. Furthermore, the model is used to predict the carbonation life of the main components in actual engineering and considers two-dimensional carbonation. It was found that when the replacement rate of RAs was 40%, the predicted life of the main components after carbonation in actual engineering was close to the design life.","PeriodicalId":54484,"journal":{"name":"Reviews on Advanced Materials Science","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135799562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Damage constitutive model of jointed rock mass considering structural features and load effect","authors":"Bing Sun, Peng Yang, Yu Luo, Bo Deng, Sheng Zeng","doi":"10.1515/rams-2023-0129","DOIUrl":"https://doi.org/10.1515/rams-2023-0129","url":null,"abstract":"Abstract Rock masses in underground engineering are usually damaged, which are caused by rock genesis and environmental stress. Studying the constitutive relationship between rock strength and deformation under loading is crucial for the design and evaluation of such scenarios. The new damage constitutive model considering the dynamic change of joint damage was developed to describe the behavior of rocks under loading in this work. First, considering the influence of jointed rock mass structural features in their entirety, the Drucker–Prager criterion and the Hoek–Brown criterion were combined. Second, based on the idea of macro–micro coupling, the calculation formulae of damage variables were derived. Finally, the damage constitutive model of the jointed rock mass was established, and the proposed model was fitted and compared with the test data. Results show that the variation rules for damage value and peak strength are opposite, and the stress–strain is highly sensitive to changes in the parameter s of the model. Moreover, the proposed model can accurately describe the effect of joint deterioration on the entire process of rock mass compression failure, which shows that the damage constitutive models are useful for evaluating the strength characteristics of jointed rock mass in engineering practice.","PeriodicalId":54484,"journal":{"name":"Reviews on Advanced Materials Science","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136373085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Blending and functionalisation modification of 3D printed polylactic acid for fused deposition modeling","authors":"Yishan Li, Lijie Huang, Xiyue Wang, Yanan Wang, Xuyang Lu, Zhehao Wei, Qi Mo, Yao Sheng, Shuya Zhang, Chongxing Huang, Qingshan Duan","doi":"10.1515/rams-2023-0140","DOIUrl":"https://doi.org/10.1515/rams-2023-0140","url":null,"abstract":"Abstract Polylactic acid (PLA) is extensively used as a raw material in fused deposition modeling (FDM)-based three-dimensional printing (3DP), owing to its abundant resources, simple production processes, decent biodegradability, and adequate mechanical strength. However, it has disadvantages such as poor toughness and straightforward bending deformation. Given the considerable application potential of PLA materials in FDM-based 3DP technology, herein, studies conducted over the last 5 years toward the enhancement of the characteristics of PLA for FDM are summarized. In particular, modification approaches (chemical or physical methods) that have been employed to improve the mechanical and processing attributes of PLA are discussed, along with the development of PLA composites with unique functionalities. The insights provided herein can help expand the scope of application of PLA composites in FDM-based 3DP for utilization in fields such as transportation, aerospace engineering, industrial equipment fabrication, consumer/electronic product manufacturing, and biomedicine/medicine.","PeriodicalId":54484,"journal":{"name":"Reviews on Advanced Materials Science","volume":"66 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135660505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hu Shao, Jianya Tang, Wenzheng He, Shuang Huang, Tengjiang Yu
{"title":"Study on aging mechanism of SBS/SBR compound-modified asphalt based on molecular dynamics","authors":"Hu Shao, Jianya Tang, Wenzheng He, Shuang Huang, Tengjiang Yu","doi":"10.1515/rams-2023-0106","DOIUrl":"https://doi.org/10.1515/rams-2023-0106","url":null,"abstract":"Abstract Component ratio change is considered to be the main reason leading to the deterioration of asphalt properties, but there are few studies on the aging mechanism from the perspective of modifier molecules. To reveal the aging mechanism of styrene–butadiene–styrene block copolymer (SBS)/styrene butadiene rubber (SBR) compound-modified asphalt, the micro mechanism in the aging process was studied by combining molecular dynamics (MD) and Fourier transform infrared spectroscopy (FTIR). First, MD was used to establish the micro models of SBS/SBR compound-modified asphalt at different aging stages (non-aging, short-term aging, and long-term aging) and to verify its rationality. Second, the micro characteristics of the SBS/SBR compound-modified asphalt micro model, such as solubility parameters, diffusion coefficient, interface interaction energy, and radial distribution function, were analyzed by calculation. Finally, the FTIR results proved the rationality of the simulation and explained the aging mechanism of SBS/SBR compound-modified asphalt. The results show that the cohesiveness density and solubility parameters of SBS/SBR compound-modified asphalt increase, the diffusion coefficient decreases, and the molecular interface stability increases during the aging process. And, the carbonyl index, sulfoxide index, and aromatic ring index increased in different degrees after aging. The study explains the aging mechanism of SBS/SBR compound-modified asphalt from the perspective of modifier molecules and provides a theoretical basis for the research of asphalt anti-aging.","PeriodicalId":54484,"journal":{"name":"Reviews on Advanced Materials Science","volume":"53 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136078758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Influence of sodium silicate to precursor ratio on mechanical properties and durability of the metakaolin/fly ash alkali-activated sustainable mortar using manufactured sand","authors":"Peng Zhang, Cong Wang, Fei Wang, P. Yuan","doi":"10.1515/rams-2022-0330","DOIUrl":"https://doi.org/10.1515/rams-2022-0330","url":null,"abstract":"Abstract In recent years, manufactured sand produced from crushed rock has been used as fine aggregate instead of natural sand in construction and industrial fields to minimize the impact of natural sand depletion in nature and society. In this research, the mechanical properties and durability of alkali-activated sustainable mortar using manufactured sand and different sodium silicate (solution) to precursor ratios (SSPR; 0.60, 0.65, 0.70, 0.75, and 0.80) by weight were investigated. Metakaolin and fly ash were used as precursor, sodium silicate (solution) and sodium hydroxide were used as alkali-activator, and manufactured sand made from broken limestone was used to completely replace river sand as fine aggregate to prepare metakaolin/fly ash (MK/FA) alkali-activated sustainable mortar to ensure sustainable development. The compressive, tensile, and flexural strengths, anti-permeability, and crack resistance of MK/FA alkali-activated sustainable mortar were tested. The impact of different SSPRs on the mechanical properties and durability of alkali-activated sustainable mortar was analyzed. Quadratic function fitting models of tensile strength to compressive strength and flexural strength to compressive strength were proposed. Furthermore, the statistical effects of each parameter were explored using analysis of variance and F-test of statistical analysis. The experimental results indicate that the SSPR has a remarkable effect on the mechanical properties and durability of MK/FA alkali-activated sustainable mortar. When the SSPR is in the range of 0.6–0.8, the compressive, tensile, and flexural strength of the alkali-activated sustainable mortar initially increased and then decreased; however, there is an opposite trend in water penetration depth and crack index. MK/FA alkali-activated sustainable mortar exhibits best compressive strength, tensile strength, flexural strength, anti-permeability, and cracking resistance of 40.2 MPa, 3.38 MPa, 4.3 MPa, 41.3 mm, and 245 mm, respectively, at SSPR of 0.7. The experimental findings of this study can provide theoretical guidance for practical engineering of alkali-activated sustainable mortars using manufactured sand.","PeriodicalId":54484,"journal":{"name":"Reviews on Advanced Materials Science","volume":"296 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79604440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Color match evaluation using instrumental method for three single-shade resin composites before and after in-office bleaching","authors":"Aylin Çilingir, Engin Kariper","doi":"10.1515/rams-2022-0334","DOIUrl":"https://doi.org/10.1515/rams-2022-0334","url":null,"abstract":"Abstract The aim of this study is to evaluate the effect of an office bleaching agent on the color of various single-shade resin composites. Three single-shade resin composites were tested in this study. Thirty disk-shaped specimens were prepared with a diameter of 10 mm and a height of 1 mm, and they were divided into three groups (n = 10). After color measurements, 40% hydrogen peroxide containing bleaching agent gel was applied to all the specimens. Baseline and final color measurements were performed using a clinical spectrophotometer. Statistical analyses were performed. All bleached specimens had clinically incomprehensible color changes (ΔE < 3.3). Comparisons for single-shade composites revealed no statistically significant color difference between groups. With the limitation of this study in mind, color changes in single-shade resin-composites after office bleaching were found to be clinically acceptable. It may be appropriate to use single-shade composites that shorten the in-chair clinical time by facilitating shade selection.","PeriodicalId":54484,"journal":{"name":"Reviews on Advanced Materials Science","volume":"9 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80195191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Applicability of fractal models for characterising pore structure of hybrid basalt–polypropylene fibre-reinforced concrete","authors":"Bo Liu, Dan Li, Qiang Fu, Lu He, Tianrui Mai","doi":"10.1515/rams-2022-0272","DOIUrl":"https://doi.org/10.1515/rams-2022-0272","url":null,"abstract":"Abstract The pore-structure characteristics of hybrid basalt–polypropylene fibre-reinforced concrete were investigated by using mercury intrusion porosimetry. The applicability of various fractal models in characterising the HBPRC pore structure was compared. The results show that the types and content of fibres show different influences on the cumulative pore volume and fractal characteristics of hybrid basalt-polypropylene fibre-reinforced concrete. Compared with pore-volume and solid mass, the fractal characteristics of pore surface area of hybrid basalt-polypropylene fibre-reinforced concrete is more significant. Furthermore, the pore-surface fractal model that established based on the energy conservation relationship during mercury intrusion is more accurate and effective for the characterization of fractal dimension of hybrid basalt-polypropylene fibre-reinforced concrete. The research results can provide important theoretical guidance for the study of pore structure and fractal characteristics of fibre-reinforced concrete.","PeriodicalId":54484,"journal":{"name":"Reviews on Advanced Materials Science","volume":"177 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80677290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wencan Tao, Bin Wang, Nuoxin Wang, Y. Guo, Jinyang Li, Zuowan Zhou
{"title":"Research progress on basalt fiber-based functionalized composites","authors":"Wencan Tao, Bin Wang, Nuoxin Wang, Y. Guo, Jinyang Li, Zuowan Zhou","doi":"10.1515/rams-2022-0300","DOIUrl":"https://doi.org/10.1515/rams-2022-0300","url":null,"abstract":"Abstract Basalt fiber (BF) is a kind of high-performance fiber rising rapidly in recent years. BF is typically used in the field of structure engineering because of its high strength and high modulus. The preparation of BF-based composites first requires surface modification of BF to improve the interfacial bonding between BF and the resin matrix. With the continuous deepening of the research on BF surface modification, researchers have found that special surface modification can obtain BF-based functionalized composites, and this field has received extensive attention in recent years. In this article, research work on BF-based functional composites in recent years are summarized and reviewed from the aspects of electromagnetic shielding, water treatment, catalytic function and fire insulation. Finally, this article summarizes the BF surface modification methods, and proposes the development trends and direction of BF-based functional composites.","PeriodicalId":54484,"journal":{"name":"Reviews on Advanced Materials Science","volume":"66 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90273261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}