Nadine Worel , Miroslav Mišík , Michael Kundi , Franziska Ferk , Hans-Peter Hutter , Armen Nersesyan , Georg Wultsch , Georg Krupitza , Siegfried Knasmueller
{"title":"Impact of high (1950 MHz) and extremely low (50 Hz) frequency electromagnetic fields on DNA damage caused by occupationally relevant exposures in human derived cell lines","authors":"Nadine Worel , Miroslav Mišík , Michael Kundi , Franziska Ferk , Hans-Peter Hutter , Armen Nersesyan , Georg Wultsch , Georg Krupitza , Siegfried Knasmueller","doi":"10.1016/j.tiv.2024.105902","DOIUrl":"10.1016/j.tiv.2024.105902","url":null,"abstract":"<div><p>Epidemiological studies indicate that electromagnetic fields (EMF) are associated with cancer in humans. Exposure to mobile phone specific high frequency fields (HF-EMF) may lead to increased glioma risks, while low frequency radiation (LF-EMF) is associated with childhood leukemia. We studied the impact of HF-EMF (1950 MHz, UMTS signal) on DNA stability in an astrocytoma cell line (1321N1), and the effect of LF-EMF (50 Hz) in human derived lymphoma (Jurkat) cells. To find out if these fields affect chemically induced DNA damage, co-exposure experiments were performed. The cells were exposed to HF-EMF or LF-EMF and treated simultaneously and sequentially with mutagens. The compounds cause DNA damage via different molecular mechanisms, i.e. pyrimidine dimers which are characteristic for UV light (4-nitroquinoline 1-oxide, 4NQO), bulky base adducts (benzo[<em>a</em>]pyrene diolepoxide, BPDE), DNA-DNA and DNA-protein cross links and oxidative damage (NiCl<sub>2</sub>, CrO<sub>3</sub>). DNA damage was measured in single cell gel electrophoresis (comet) assays. We found a moderate reduction of basal and 4NQO-induced DNA damage in the astrocytoma line, but no significant alterations of chemically induced DNA migration by the HF and LF fields under all other experimental series. The biological consequences of the moderate reduction remain unclear, but our findings indicate that acute mobile phone and power line specific EMF exposures do not enhance genotoxic effects caused by occupationally relevant chemical exposures.</p></div>","PeriodicalId":54423,"journal":{"name":"Toxicology in Vitro","volume":"100 ","pages":"Article 105902"},"PeriodicalIF":2.6,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0887233324001322/pdfft?md5=62295074e9b2f9b00db6eee21e33b8bc&pid=1-s2.0-S0887233324001322-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141725107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modulation of adipogenesis and lipogenesis by indomethacin and pantoprazole","authors":"Bita Entezari , Hasan Akbaba , Hande Gurer-Orhan","doi":"10.1016/j.tiv.2024.105895","DOIUrl":"10.1016/j.tiv.2024.105895","url":null,"abstract":"<div><p>Endocrine disruptors are suggested to act as potential “obesogens” by interacting with various metabolic processes in adipose tissue. Besides industrial chemicals that are blamed for acting as endocrine disruptors as well as obesogens, pharmaceuticals can also cause obesogenic effects as unintended adverse effects. However, limited studies evaluated the obesogenic adverse effects of pharmaceuticals. Based on this information, the present study aimed to investigate the possible <em>in vitro</em> adipogenic/lipogenic potential of indomethacin and pantoprazole that are prescribed during pregnancy. Their effects on lipid accumulation, adiponectin level, glycerol-3-phosphate dehydrogenase (G3PDH) activity, and expression of adipogenic genes and proteins were investigated in 3 T3-L1 cell line. The range of concentrations of the pharmaceuticals was selected according to their C<sub>max</sub> values. Lipid accumulation was increased dependently with indomethacin dose and with pantoprazole at its highest concentration. Both pharmaceuticals also increased adiponectin levels, which was thought to play a role in stimulating the adipogenesis pathway. Moreover, both pharmaceuticals altered the gene and/or protein expression of some adipogenic/lipogenic transcriptional factors, which may lead to disruption of metabolic pathways during the fetal period. In conclusion, indomethacin and pantoprazole may have obesogenic effects through different mechanisms and their potential to cause obesity should be investigated by further <em>in vivo</em> and epidemiological studies.</p></div>","PeriodicalId":54423,"journal":{"name":"Toxicology in Vitro","volume":"100 ","pages":"Article 105895"},"PeriodicalIF":2.6,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141617661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hang Han , Zhen Zhang , Bo Xu , Liyang Ding , Hong Yang , Tiantian He , Xing Du , Xiuying Pei , Xufeng Fu
{"title":"Integrated transcriptomic and metabolomic analysis reveals the underlying mechanisms for male reproductive toxicity of polystyrene nanoplastics in mouse spermatocyte-derived GC-2spd(ts) cells","authors":"Hang Han , Zhen Zhang , Bo Xu , Liyang Ding , Hong Yang , Tiantian He , Xing Du , Xiuying Pei , Xufeng Fu","doi":"10.1016/j.tiv.2024.105893","DOIUrl":"10.1016/j.tiv.2024.105893","url":null,"abstract":"<div><h3>Background</h3><p>Polystyrene nanoplastics (PS-NPs), are ubiquitous pollution sources in human environments, posing significant biosafety and health risks. While recent studies, including our own, have illustrated that PS-NPs can breach the blood-testis barrier and impact germ cells, there remains a gap in understanding their effects on specific spermatogenic cells such as spermatocytes.</p></div><div><h3>Methods and results</h3><p>Herein, we employed an integrated approach encompassing phenotype, metabolomics, and transcriptomics analyses to assess the molecular impact of PS-NPs on mouse spermatocyte-derived GC-2spd(ts) cells. Optimal exposure conditions were determined as 24 h with 50 nm PS-NPs at 12.5 μg/mL and 90 nm PS-NPs at 50 μg/mL for subsequent multi-omics analysis. Our findings revealed that PS-NPs significantly influenced proliferation and viability, causing alterations in transcriptome and metabolome profiles. Transcriptomics analysis of GC-2spd(ts) cells exposed to PS-NPs indicated the pivotal involvement of cell proliferation and cycle, autophagy, ferroptosis, and redox reaction pathways in PS-NP-induced effects on the proliferation and viability of GC-2spd(ts) cells. Furthermore, metabolomics analysis identified major changes in amino acid metabolism, cyanoamino acid metabolism, and purine and pyrimidine metabolism following PS-NP exposure.</p></div><div><h3>Conclusion</h3><p>Our integrated approach, combining metabolomics and transcriptomics profiles with phenotype data, enhances our understanding of the adverse effects of PS-NPs on germ cells.</p></div>","PeriodicalId":54423,"journal":{"name":"Toxicology in Vitro","volume":"100 ","pages":"Article 105893"},"PeriodicalIF":2.6,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141604534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abderrahim Diane , Salima Ben Tahar , Abdennacer El Mrabet , Reda Rabie , Taoufiq Saffaj , Bouchaib Ihssane
{"title":"QSAR modeling for cytotoxicity of sulfur-containing Shikonin oxime derivatives targeting HCT-15, MGC-803, BEL-7402, and MCF-7 cell lines","authors":"Abderrahim Diane , Salima Ben Tahar , Abdennacer El Mrabet , Reda Rabie , Taoufiq Saffaj , Bouchaib Ihssane","doi":"10.1016/j.tiv.2024.105892","DOIUrl":"10.1016/j.tiv.2024.105892","url":null,"abstract":"<div><p>Targeting cancer cells through drug-based treatment or combination therapy protocols involving chemical compounds can be challenging due to multiple factors, including their resistance to bioactive compounds and the potential of drugs to damage healthy cells. This study aims to investigate the relationship between the structure of novel sulfur-containing shikonin oxime compounds and the corresponding cytotoxicity against four cancer types, namely colon, gastric, liver, and breast cancers, through computational chemistry tools. This investigation is suggested to help build insights into how the structure of the compounds influences their activity and understand the mechanisms behind it and subsequently might be used in multi-cancer drug design process to propose novel optimized compounds that potentially exhibit the desired activity. The findings showed that the cytotoxic activity against the four cancer types was accurately predictable (R<sup>2</sup> > 0.7, NRMSE <20%) by a combination of search and machine learning algorithms, based on the information on the structure of the compounds, including their lipophilicity, surface area, and volume. Overall, this study is supposed to play a crucial role in effective multi-cancer drug design in cancer research areas.</p></div>","PeriodicalId":54423,"journal":{"name":"Toxicology in Vitro","volume":"100 ","pages":"Article 105892"},"PeriodicalIF":2.6,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141602191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The recovery from taxane mediated apoptosis in PC-3 castration-resistant metastatic prostate cancer cells","authors":"Gamze Guney Eskiler , Asuman Deveci Ozkan , Merve Acikel Elmas , Melek Ozturk , Serap Arbak","doi":"10.1016/j.tiv.2024.105894","DOIUrl":"10.1016/j.tiv.2024.105894","url":null,"abstract":"<div><p>Here, we revealed the reversibility of cabazitaxel (CBZ)-induced apoptosis in PC-3 castration resistant metastatic prostate cancer cells (mCRPC) through the hallmarks of apoptosis. The recovery of PC-3 cells from apoptosis upon removal of CBZ at different recovery periods was evaluated by Annexin V, DNA damage, oxidative damage, mitochondrial membrane depolarization, and caspase activation. Our results showed that the administration of CBZ caused apoptosis for 72 h in PC-3 cells. However, recovered cells exhibited decreased nuclear damage, plasma membrane disruption, ROS level, release cytochrome <em>c</em> level and caspase-3 activation with upregulation of Bcl-2 expression upon removal of especially 1 nM CBZ for 24 h recovery period in PC-3 cells. Our study indicates that CBZ treated PC-3 cells can recover after apoptotic cell death. However, advanced molecular analysis should elucidate the relationship between the molecular mechanisms of recovery and taxane response or resistance in PC-3 mCRPC cells.</p></div>","PeriodicalId":54423,"journal":{"name":"Toxicology in Vitro","volume":"100 ","pages":"Article 105894"},"PeriodicalIF":2.6,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141602192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Toxicity of New Psychoactive Substance (NPS): Threo-4-methylmethylphenidate (4-Mmph) – Prediction of toxicity using in silico methods","authors":"Łukasz Niżnik , Karolina Jabłońska , Michał Orczyk , Martyna Orzechowska , Joanna Toporowska-Kaźmierak , Marta Sowińska , Judyta Jasińska , Kamil Jurowski","doi":"10.1016/j.tiv.2024.105891","DOIUrl":"10.1016/j.tiv.2024.105891","url":null,"abstract":"<div><p>This study represents the first application of <em>in silico</em> methods to evaluate the toxicity of 4-methylphenidate (4-Mmph), a new psychoactive substance (NPS). Using advanced <em>in silico</em> toxicology tools, it was feasible to anticipate key aspects of 4-Mmph's toxicological profile, including acute toxicity (LD<sub>50</sub>), genotoxicity, cardiotoxicity, and possible endocrine disruption. The findings indicate significant acute toxicity with variability among species, a high potential for adverse effects in the gastrointestinal system and lungs, a low genotoxic potential, a significant likelihood of skin irritation, and a notable cardiotoxicity risk associated with hERG channel inhibition. Evaluation of endocrine disruption revealed a low likelihood that 4-Mmph interacts with the estrogen receptor alpha (ER-α), indicating minimal estrogenic activity. These insights, derived from <em>in silico</em> studies, play a crucial role in improving the comprehension of 4-Mmph in forensic and clinical toxicology. These initial toxicological inquiries establish the foundation for future investigations and help formulate risk assessment and management strategies regarding the use and abuse of NPS. This article is part of a larger project funded by the Polish Ministry of Education and Science, titled “Toxicovigilance, Poisoning Prevention, and First Aid in Poisoning with Xenobiotics of Current Clinical Importance in Poland” (Grant Number SKN/SP/570184/2023).</p></div>","PeriodicalId":54423,"journal":{"name":"Toxicology in Vitro","volume":"99 ","pages":"Article 105891"},"PeriodicalIF":2.6,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141555988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ana Juan-García , Ana-María Ilie , Cristina Juan , Lola Martínez
{"title":"Evaluating the combined and individual cytotoxic effect of beauvericin, enniatin B and ochratoxin a on breast cancer cells, leukemia cells, and fresh peripheral blood mononuclear cells","authors":"Ana Juan-García , Ana-María Ilie , Cristina Juan , Lola Martínez","doi":"10.1016/j.tiv.2024.105890","DOIUrl":"10.1016/j.tiv.2024.105890","url":null,"abstract":"<div><p>Beauvericin (BEA), Enniatin B (ENN B), and Ochratoxin A (OTA) are mycotoxins produced by fungi <em>species</em>. Their main effect on several organs and systems is associated with chronic exposure going from immunotoxicity, estrogenic disorders, and renal failure to cancer (in animals and humans). OTA belongs to Group 1 according to the International Agency for Research in Cancer (IARC) and it has legislated limited values; not happening for BEA nor ENN B. Exposure to mixtures of mycotoxins occurs through food intake in daily consumption. The aim of this study was to evaluate the implication of BEA, ENN B, and OTA individually and combined in producing cytotoxicity in cells for immunological studies and cancer cell lines (human leukemia cells (HL-60), fresh human peripheral blood mononuclear cells (PBMCs), and human breast cancer (MDA-MB-231) cells). Cells were treated for 4 h and 24 h at different concentrations of BEA, ENN B, and OTA, respectively. Viability assays were carried out by flow cytometry using DAPI (4′,6-diamindino-2-phenylindole, dihydrochloride) as a viability dye and the potential effects of synergism, addition, and antagonism were assessed through the Chou and Talalay method. Individual OTA treatment exerted the greatest cytotoxicity for PBMC cells (IC<sub>50</sub> 0.5 μM) while ENN B for HL-60 (IC<sub>50</sub> 0.25 μM) and MDA-MB-231 (IC<sub>50</sub> 0.15 μM). In binary combination [ENN B + OTA] resulted in exerting the greatest cytotoxicity for HL-60 and MDA-MB-231 cells; while [BEA + OTA] in PBMC cells. The triple combination resulted in being highly cytotoxic for PBMC cells compared to HL-60 and MDA-MB-231 cells. In summary, PBMC cells were the most sensible cells for all three mycotoxins and the presence of OTA in any of the combinations had the greatest toxicity causing synergism as the most common cytotoxic effect.</p></div>","PeriodicalId":54423,"journal":{"name":"Toxicology in Vitro","volume":"99 ","pages":"Article 105890"},"PeriodicalIF":2.6,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0887233324001206/pdfft?md5=ade20204abad1f7a86ab4d8bbabfd67c&pid=1-s2.0-S0887233324001206-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141555986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Predicting the binding affinity of chemicals to estrogen receptor using Hansen solubility parameters","authors":"Nobuyuki Fujiwara, Len Ito","doi":"10.1016/j.tiv.2024.105885","DOIUrl":"10.1016/j.tiv.2024.105885","url":null,"abstract":"<div><p>Receptor-binding tests for the receptors of various substances are widely employed to identify drug candidates and predict the biological effects of chemical substances. Here, the results of chemicals binding to estrogen receptor (ER) reported in a validation study of the Organization for Economic Cooperation and Development TG 455 and the Hansen solubility parameter (HSP) values of the test substances were compared and examined using the Hansen sphere method, thus predicting potential HSPs that correspond to the ER-binding domain of agonists. Based on the results of the validation study and the HSP values of the test chemicals, a Hansen solubility sphere was created, and the ER potential parameter corresponding to the ER was obtained. The binding potential of the test substances to ER was predicted by comparing this potential parameter with the HSP of each test substance. These results indicate that ER binding properties can be predicted with high accuracy using the concept of HSP.</p></div>","PeriodicalId":54423,"journal":{"name":"Toxicology in Vitro","volume":"99 ","pages":"Article 105885"},"PeriodicalIF":2.6,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141555987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alison Buckley , Chang Guo , Adam Laycock , Xianjin Cui , Marie-France Belinga-Desaunay-Nault , Eugenia Valsami-Jones , Martin Leonard , Rachel Smith
{"title":"Aerosol exposure at air-liquid-interface (AE-ALI) in vitro toxicity system characterisation: Particle deposition and the importance of air control responses","authors":"Alison Buckley , Chang Guo , Adam Laycock , Xianjin Cui , Marie-France Belinga-Desaunay-Nault , Eugenia Valsami-Jones , Martin Leonard , Rachel Smith","doi":"10.1016/j.tiv.2024.105889","DOIUrl":"10.1016/j.tiv.2024.105889","url":null,"abstract":"<div><p>Experimental systems allowing aerosol exposure (AE) of cell cultures at the air-liquid-interface (ALI) are increasingly being used to assess the toxicity of inhaled contaminants as they are more biomimetic than standard methods using submerged cultures, however, they require detailed characterisation before use. An AE-ALI system combining aerosol generation with a CULTEX® exposure chamber was characterised with respect to particle deposition and the cellular effects of filtered air (typical control) exposures. The effect of system parameters (electrostatic precipitator voltage, air flowrate to cells and insert size) on deposition efficiency and spatial distribution were investigated using ICP-MS and laser ablation ICP-MS, for an aerosol of CeO<sub>2</sub> nanoparticles. Deposition varied with conditions, but appropriate choice of operating parameters produced broadly uniform deposition at suitable levels. The impact of air exposure duration on alveolar cells (A549) and primary small airway epithelial cells (SAECs) was explored with respect to LDH release and expression of selected genes. Results indicated that air exposures could have a significant impact on cells (e.g., cytotoxicity and expression of genes, including CXCL1, HMOX1, and SPP1) at relatively short durations (from 10 mins) and that SAECs were more sensitive. These findings indicate that detailed system characterisation is essential to ensure meaningful results.</p></div>","PeriodicalId":54423,"journal":{"name":"Toxicology in Vitro","volume":"100 ","pages":"Article 105889"},"PeriodicalIF":2.6,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S088723332400119X/pdfft?md5=7f14d3670aa9a2299b0495939208a5b7&pid=1-s2.0-S088723332400119X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141545554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Selected phytocannabinoids inhibit SN-38- and cytokine-evoked increases in epithelial permeability and improve intestinal barrier function in vitro","authors":"Dylan T. Marsh, Scott D. Smid","doi":"10.1016/j.tiv.2024.105888","DOIUrl":"10.1016/j.tiv.2024.105888","url":null,"abstract":"<div><p>Irinotecan use is linked to the development of gastrointestinal toxicity and inflammation, or gastrointestinal mucositis. Selected phytocannabinoids have been ascribed anti-inflammatory effects in models of gastrointestinal inflammation, associated with maintaining epithelial barrier function. We characterised the mucoprotective capacity of the phytocannabinoids: cannabidiol, cannabigerol, cannabichromene and cannabidivarin in a cell-based model of intestinal epithelial stress occurring in mucositis.</p><p>Transepithelial electrical resistance (TEER) was measured to determine changes in epithelial permeability in the presence of SN-38 (5 μM) or the pro-inflammatory cytokines TNFα and IL-1β (each at 100 ng/mL), alone or with concomitant treatment with each of the phytocannabinoids (1 μM). The DCFDA assay was used to determine the ROS-scavenging ability of each phytocannabinoid following treatment with the lipid peroxidant <em>t</em>bhp (200 μM).</p><p>Each phytocannabinoid provided significant protection against cytokine-evoked increases in epithelial permeability. Cannabidiol, cannabidivarin and cannabigerol were also able to significantly inhibit SN-38-evoked increases in permeability. None of the tested phytocannabinoids inhibited <em>t</em>bhp-induced ROS generation.</p><p>These results highlight a novel role for cannabidiol, cannabidivarin and cannabigerol as inhibitors of SN-38-evoked increases in epithelial permeability and support the rationale for the further development of novel phytocannabinoids as supportive therapeutics in the management of irinotecan-associated mucositis.</p></div>","PeriodicalId":54423,"journal":{"name":"Toxicology in Vitro","volume":"99 ","pages":"Article 105888"},"PeriodicalIF":2.6,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0887233324001188/pdfft?md5=ef17c8dc0f9b8add6d3d27bb79e1930f&pid=1-s2.0-S0887233324001188-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141477955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}