{"title":"A short remark on inviscid limit of the stochastic Navier–Stokes equations","authors":"Abhishek Chaudhary, Guy Vallet","doi":"10.1007/s00033-023-02110-w","DOIUrl":"https://doi.org/10.1007/s00033-023-02110-w","url":null,"abstract":"Abstract In this article, we study the inviscid limit of the stochastic incompressible Navier–Stokes equations in three-dimensional space. We prove that a subsequence of weak martingale solutions of the stochastic incompressible Navier–Stokes equations converges strongly to a weak martingale solution of the stochastic incompressible Euler equations in the periodic domain under the well-accepted hypothesis, namely Kolmogorov hypothesis ( K41 ).","PeriodicalId":54401,"journal":{"name":"Zeitschrift fur Angewandte Mathematik und Physik","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135854826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pointwise stabilization of Bresse systems","authors":"Jaime E. Muñoz Rivera, Maria Grazia Naso","doi":"10.1007/s00033-023-02108-4","DOIUrl":"https://doi.org/10.1007/s00033-023-02108-4","url":null,"abstract":"Abstract Bresse system over the interval (0, L ) with pointwise dissipation at $$xi in (0,{L})$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>ξ</mml:mi> <mml:mo>∈</mml:mo> <mml:mo>(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>L</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> is analyzed. The exponential stability of the related semigroup is shown provided the dissipative points are of the form $$xi in mathbb {Q}{L}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>ξ</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>Q</mml:mi> <mml:mi>L</mml:mi> </mml:mrow> </mml:math> and $$xi ne frac{n}{2m+1}L$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>ξ</mml:mi> <mml:mo>≠</mml:mo> <mml:mfrac> <mml:mi>n</mml:mi> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>m</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:mfrac> <mml:mi>L</mml:mi> </mml:mrow> </mml:math> , where $$n,min mathbb {N}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>,</mml:mo> <mml:mi>m</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>N</mml:mi> </mml:mrow> </mml:math> and n , and $$2m+1$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>m</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> are co-prime.","PeriodicalId":54401,"journal":{"name":"Zeitschrift fur Angewandte Mathematik und Physik","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135854842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dynamical analysis of an age-space structured malaria epidemic model","authors":"Jinliang Wang, Meiyu Cao, Toshikazu Kuniya","doi":"10.1007/s00033-023-02097-4","DOIUrl":"https://doi.org/10.1007/s00033-023-02097-4","url":null,"abstract":"Abstract In this paper, we will revisit the model studied in Lou and Zhao (J Math Biol 62:543–568, 2011), where the model takes the form of a nonlocal and time-delayed reaction–diffusion model arising from the fixed incubation period. We consider the infection age to be a continuous variable but without the limitation of the fixed incubation period, leading to an age-space structured malaria model in a bounded domain. By performing the elementary analysis, we investigate the well-posedness of the model by proving the global existence of the solution, define the explicit formula of basic reproduction number when all parameters remain constant. By analyzing the characteristic equations and designing suitable Lyapunov functions, we also establish the threshold dynamics of the constant disease-free and positive equilibria. Our theoretical results are also validated by numerical simulations for 1-dimensional and 2-dimensional domains.","PeriodicalId":54401,"journal":{"name":"Zeitschrift fur Angewandte Mathematik und Physik","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134944299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Homogenization of the non-isothermal, non-Newtonian fluid flow in a thin domain with oscillating boundary","authors":"Jean Carlos Nakasato, Igor Pažanin","doi":"10.1007/s00033-023-02105-7","DOIUrl":"https://doi.org/10.1007/s00033-023-02105-7","url":null,"abstract":"","PeriodicalId":54401,"journal":{"name":"Zeitschrift fur Angewandte Mathematik und Physik","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135351667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A two-strain malaria transmission model with seasonality and incubation period","authors":"Rong Zhou, Shi-Liang Wu","doi":"10.1007/s00033-023-02112-8","DOIUrl":"https://doi.org/10.1007/s00033-023-02112-8","url":null,"abstract":"","PeriodicalId":54401,"journal":{"name":"Zeitschrift fur Angewandte Mathematik und Physik","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135352053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Global bounded solution of a forager–exploiter model with logistic sources and different taxis mechanisms","authors":"Changfeng Liu, Shangjiang Guo","doi":"10.1007/s00033-023-02114-6","DOIUrl":"https://doi.org/10.1007/s00033-023-02114-6","url":null,"abstract":"","PeriodicalId":54401,"journal":{"name":"Zeitschrift fur Angewandte Mathematik und Physik","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135345422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On Liouville-type theorems for the stationary nematic liquid crystal equations","authors":"Jie Zhang, Shu Wang, Fan Wu","doi":"10.1007/s00033-023-02103-9","DOIUrl":"https://doi.org/10.1007/s00033-023-02103-9","url":null,"abstract":"","PeriodicalId":54401,"journal":{"name":"Zeitschrift fur Angewandte Mathematik und Physik","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135345428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The existence of solutions for parabolic problem with the limiting case of double phase flux","authors":"Wen-Shuo Yuan, Bin Ge, Qing-Hai Cao, Yu Zhang","doi":"10.1007/s00033-023-02109-3","DOIUrl":"https://doi.org/10.1007/s00033-023-02109-3","url":null,"abstract":"","PeriodicalId":54401,"journal":{"name":"Zeitschrift fur Angewandte Mathematik und Physik","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135352267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Capillarity-driven Stokes flow: the one-phase problem as small viscosity limit","authors":"Bogdan-Vasile Matioc, Georg Prokert","doi":"10.1007/s00033-023-02101-x","DOIUrl":"https://doi.org/10.1007/s00033-023-02101-x","url":null,"abstract":"Abstract We consider the quasistationary Stokes flow that describes the motion of a two-dimensional fluid body under the influence of surface tension effects in an unbounded, infinite-bottom geometry. We reformulate the problem as a fully nonlinear parabolic evolution problem for the function that parameterizes the boundary of the fluid with the nonlinearities expressed in terms of singular integrals. We prove well-posedness of the problem in the subcritical Sobolev spaces $$H^s(mathbb {R})$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msup> <mml:mi>H</mml:mi> <mml:mi>s</mml:mi> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>R</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> up to critical regularity, and establish parabolic smoothing properties for the solutions. Moreover, we identify the problem as the singular limit of the two-phase quasistationary Stokes flow when the viscosity of one of the fluids vanishes.","PeriodicalId":54401,"journal":{"name":"Zeitschrift fur Angewandte Mathematik und Physik","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135351838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study of the stability to an anisotropic reaction–diffusion equation","authors":"Huashui Zhan","doi":"10.1007/s00033-023-02072-z","DOIUrl":"https://doi.org/10.1007/s00033-023-02072-z","url":null,"abstract":"","PeriodicalId":54401,"journal":{"name":"Zeitschrift fur Angewandte Mathematik und Physik","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135690012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}