{"title":"Bresse系统的点态稳定","authors":"Jaime E. Muñoz Rivera, Maria Grazia Naso","doi":"10.1007/s00033-023-02108-4","DOIUrl":null,"url":null,"abstract":"Abstract Bresse system over the interval (0, L ) with pointwise dissipation at $$\\xi \\in (0,{L})$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>ξ</mml:mi> <mml:mo>∈</mml:mo> <mml:mo>(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>L</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> is analyzed. The exponential stability of the related semigroup is shown provided the dissipative points are of the form $$\\xi \\in \\mathbb {Q}{L}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>ξ</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>Q</mml:mi> <mml:mi>L</mml:mi> </mml:mrow> </mml:math> and $$\\xi \\ne \\frac{n}{2m+1}L$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>ξ</mml:mi> <mml:mo>≠</mml:mo> <mml:mfrac> <mml:mi>n</mml:mi> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>m</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:mfrac> <mml:mi>L</mml:mi> </mml:mrow> </mml:math> , where $$n,m\\in \\mathbb {N}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>,</mml:mo> <mml:mi>m</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>N</mml:mi> </mml:mrow> </mml:math> and n , and $$2m+1$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>m</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> are co-prime.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pointwise stabilization of Bresse systems\",\"authors\":\"Jaime E. Muñoz Rivera, Maria Grazia Naso\",\"doi\":\"10.1007/s00033-023-02108-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Bresse system over the interval (0, L ) with pointwise dissipation at $$\\\\xi \\\\in (0,{L})$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>ξ</mml:mi> <mml:mo>∈</mml:mo> <mml:mo>(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>L</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> is analyzed. The exponential stability of the related semigroup is shown provided the dissipative points are of the form $$\\\\xi \\\\in \\\\mathbb {Q}{L}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>ξ</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>Q</mml:mi> <mml:mi>L</mml:mi> </mml:mrow> </mml:math> and $$\\\\xi \\\\ne \\\\frac{n}{2m+1}L$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>ξ</mml:mi> <mml:mo>≠</mml:mo> <mml:mfrac> <mml:mi>n</mml:mi> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>m</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:mfrac> <mml:mi>L</mml:mi> </mml:mrow> </mml:math> , where $$n,m\\\\in \\\\mathbb {N}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>,</mml:mo> <mml:mi>m</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>N</mml:mi> </mml:mrow> </mml:math> and n , and $$2m+1$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>m</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> are co-prime.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00033-023-02108-4\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00033-023-02108-4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
摘要分析了区间(0,L)上具有点向耗散($$\xi \in (0,{L})$$ ξ∈(0,L)的Bresse系统。给出了相关半群的指数稳定性,其耗散点为$$\xi \in \mathbb {Q}{L}$$ ξ∈Q L和$$\xi \ne \frac{n}{2m+1}L$$ ξ≠n 2 m + 1 L,其中$$n,m\in \mathbb {N}$$ n, m∈n和n, $$2m+1$$ 2 m + 1为共素数。
Abstract Bresse system over the interval (0, L ) with pointwise dissipation at $$\xi \in (0,{L})$$ ξ∈(0,L) is analyzed. The exponential stability of the related semigroup is shown provided the dissipative points are of the form $$\xi \in \mathbb {Q}{L}$$ ξ∈QL and $$\xi \ne \frac{n}{2m+1}L$$ ξ≠n2m+1L , where $$n,m\in \mathbb {N}$$ n,m∈N and n , and $$2m+1$$ 2m+1 are co-prime.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.