International Journal of Antennas and Propagation最新文献

筛选
英文 中文
Design of Wideband Two-Sided Bandpass Frequency Selective Surface for X, Ka, and Ku Band Application 用于X、Ka和Ku波段应用的宽带双面带通频率选择面设计
IF 1.5 4区 计算机科学
International Journal of Antennas and Propagation Pub Date : 2023-12-05 DOI: 10.1155/2023/7491755
V. Vanitha, S. Esther Florence, A. Alaguraj, Lakshmi Janaki Gollamudi
{"title":"Design of Wideband Two-Sided Bandpass Frequency Selective Surface for X, Ka, and Ku Band Application","authors":"V. Vanitha, S. Esther Florence, A. Alaguraj, Lakshmi Janaki Gollamudi","doi":"10.1155/2023/7491755","DOIUrl":"https://doi.org/10.1155/2023/7491755","url":null,"abstract":"A novel wideband bandpass frequency-selective surface functioning at X, Ku, and Ka bands is proposed in this article. The designed FSS has a metallic square loop and a circular ring, and they are printed on both sides of the FR4 substrate. The proposed design FR4-based single-layer FSS is operating from 11.075 GHz to 22.075 GHz with a fractional bandwidth of 66.36%. The parameters of the square loop and circular ring regulate the characteristics of the passband. The optimum dimension of these parameters is obtained with parametric analysis. The proposed structure is measured and fabricated. However, the measured results strongly agree with the simulated results, which authenticate the proposed design performance.","PeriodicalId":54392,"journal":{"name":"International Journal of Antennas and Propagation","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138518613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Side Null Analysis of the Main-Auxiliary Antenna Array for Noncooperative Interference Cancellation 非合作干扰消除的主辅天线阵侧零分析
IF 1.5 4区 计算机科学
International Journal of Antennas and Propagation Pub Date : 2023-11-30 DOI: 10.1155/2023/7718693
ZheYu Li, JiaHao Zhang, YaXing Li, FangMin He, HongZhang Gao, Jin Meng
{"title":"Side Null Analysis of the Main-Auxiliary Antenna Array for Noncooperative Interference Cancellation","authors":"ZheYu Li, JiaHao Zhang, YaXing Li, FangMin He, HongZhang Gao, Jin Meng","doi":"10.1155/2023/7718693","DOIUrl":"https://doi.org/10.1155/2023/7718693","url":null,"abstract":"In interference cancellation, the null at the angle of arrival (AoA) of interference can suppress interference. However, due to the large spacing between array elements and the periodicity of the array, some small nulls at the angles of noninterference are formed inevitably. When the AoA of the desired signal is in these small nulls, they impair the effectiveness of interference cancellation by attenuating the desired signal. This paper proposes the concept of a side null to represent these nulls in the noninterference direction. And the cancellation ratio of the desired signal (SCR) is deduced to quantitatively characterize the side null. The spatial noncooperative interference cancellation model based on the main-auxiliary antenna array is established. Based on this, the SCR is derived to evaluate the amount of desired signal attenuation. Then the simulation, respectively, in two-dimensional plane and three-dimensional space, describes the side null visually. Moreover, the method of side null reduction is discussed by modulation of the array. Finally, the existence of side null and its influence on interference cancellation are verified through the experiments. The results of the simulation and experiment are in good agreement, and both support the theoretical analysis.","PeriodicalId":54392,"journal":{"name":"International Journal of Antennas and Propagation","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138518641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance Analysis of MIMO Antenna Design with High Isolation Techniques for 5 G Wireless Systems 5g无线系统高隔离MIMO天线设计性能分析
IF 1.5 4区 计算机科学
International Journal of Antennas and Propagation Pub Date : 2023-11-29 DOI: 10.1155/2023/1566430
Suverna Sengar, Praveen Kumar Malik, Puneet Chandra Srivastava, Kiran Srivastava, Anita Gehlot
{"title":"Performance Analysis of MIMO Antenna Design with High Isolation Techniques for 5 G Wireless Systems","authors":"Suverna Sengar, Praveen Kumar Malik, Puneet Chandra Srivastava, Kiran Srivastava, Anita Gehlot","doi":"10.1155/2023/1566430","DOIUrl":"https://doi.org/10.1155/2023/1566430","url":null,"abstract":"This paper investigates different approaches for achieving isolation in a MIMO antenna design. It provides an in-depth comparison of these techniques, analyzing their advantages and disadvantages. The challenges of obtaining sufficient isolation in modern MIMO antenna design are discussed, and various isolation methods developed for the MIMO design are examined. The study introduces a compact 28 GHz 4-port MIMO antenna design, which is placed on a Rogers RT/Duroid 5880 substrate. The design includes a rectangular patch with semicircles at the ends and dual slots etched from it. A partial ground plane is integrated into the antenna to achieve an operating frequency range from 22 to 29 GHz, centered at 24 GHz. To reduce mutual coupling between elements, four elements are arranged orthogonally and four stubs are added at a specific frequency band to enhance isolation. The ground plane also incorporates a defected ground structure (DGS) to improve gain. To optimize the antenna’s bandwidth, a ground cut technique is used, resulting in a 0.7 GHz bandwidth enhancement at the cost of some isolation. The antenna operates in the range of 22.5– 29.1 GHz, with a peak gain of 6.39 dBi. Each technique is compared based on parameters such as <i>S</i>-parameters (return loss or reflection coefficient), voltage standing wave ratio (VSWR), isolation level, and peak gain. Simulated results are shown for each of the techniques to compare their performance by using Ansys HFSS simulations which confirm that the designed antenna meets the target band requirements and could be used in 5 G communications.","PeriodicalId":54392,"journal":{"name":"International Journal of Antennas and Propagation","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138518622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of a Three-Dimensional Uniform UHF Near-Field RFID Reader Antenna 三维均匀超高频近场RFID读取器天线的设计
IF 1.5 4区 计算机科学
International Journal of Antennas and Propagation Pub Date : 2023-11-24 DOI: 10.1155/2023/5545085
Yuan Yao, Yani Xue, Xiaojuan Ren, Junsheng Yu, Xiaohe Cheng, Xiaodong Chen
{"title":"Design of a Three-Dimensional Uniform UHF Near-Field RFID Reader Antenna","authors":"Yuan Yao, Yani Xue, Xiaojuan Ren, Junsheng Yu, Xiaohe Cheng, Xiaodong Chen","doi":"10.1155/2023/5545085","DOIUrl":"https://doi.org/10.1155/2023/5545085","url":null,"abstract":"This paper proposes a three-dimensional uniform ultra-high frequency (UHF) near-field radio frequency identification (RFID) reader antenna. The antenna achieves a uniform electric field in the <i>x</i> and <i>y</i> directions by placing a single branch microstrip line along the <i>x</i>-axis and <i>y</i>-axis directions, respectively. It reaches a uniform electric field in the <i>z</i>-direction by a centrosymmetric four-branch microstrip line. The proposed antenna achieves three-dimensional direction uniformity through a reconfigurable method. The impedance matching bandwidth range of <svg height=\"11.8174pt\" style=\"vertical-align:-3.1815pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 15.5881 11.8174\" width=\"15.5881pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,6.071,3.132)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,10.503,3.132)\"><use xlink:href=\"#g50-50\"></use></g></svg> &lt;−10 dB for simulation and measurement includes 0.66 to 0.98 GHz, which can meet the near-field RFID operation frequency band demand. The isolation degrees between ports are less than −24.6 dB within the UHF RFID frequency band (0.86 to 0.96 GHz). In addition, the antenna also has the characteristic of low gain in the far field, and the maximum gain in the far field is less than −27 dBi when operating at different ports. The test results show that the proposed antenna three-dimensional uniform volume of dipole tags above the antenna is 99 mm × 99 mm × 20 mm, and the reading volume of the near-field tags is 40 mm × 40 mm × 5 mm. When the tags are placed on a book, there will be a slight variation in the reading range of the tags.","PeriodicalId":54392,"journal":{"name":"International Journal of Antennas and Propagation","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138518621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-Layer Differential-Fed Wideband Metasurface Antenna Using Characteristic Mode Analysis 基于特征模态分析的单层差分馈电宽带超表面天线
4区 计算机科学
International Journal of Antennas and Propagation Pub Date : 2023-11-11 DOI: 10.1155/2023/5184139
Chao Huang, Chen-Jiang Guo, Yi Yuan, Xia Ma, Jun Ding
{"title":"Single-Layer Differential-Fed Wideband Metasurface Antenna Using Characteristic Mode Analysis","authors":"Chao Huang, Chen-Jiang Guo, Yi Yuan, Xia Ma, Jun Ding","doi":"10.1155/2023/5184139","DOIUrl":"https://doi.org/10.1155/2023/5184139","url":null,"abstract":"A single-layer differential-fed (DF) wideband metasurface (MTS) antenna is proposed in this paper. As the prototype, a three-by-three MTS formed by identical rectangular patches is investigated at first. We observe that there are many unwanted higher-order modes (HOMs) resonating near the wanted fundamental mode. Two probes with differential signals feed MTS on its centerline to suppress the majority of HOMs. The remaining HOM can be removed from the discussed frequency range by modifying the prototype MTS to a nonuniform structure. Then, the optimal feeding positions (FPs) are determined by a quantitative prediction of the impendence bandwidth (IBW) without any physical feeds involved. The processes of HOMs suppression and FPs determination are based on characteristic mode analysis with the virtual probes. Moreover, two interdigital capacitor plates are loaded on the probes to improve the impedance matching of the antenna. Finally, the proposed DF MTS antenna is fabricated and measured. The measured −10-dB IBW is 18.4% (4.93 to 5.93 GHz) with broadside radiation, stable high gains, and front-to-back ratios better than 21 dB.","PeriodicalId":54392,"journal":{"name":"International Journal of Antennas and Propagation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135041983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of Active Integrated GNSS Antenna Based on the Impedance Transforming Quadrature Four-Feed Network 基于阻抗变换正交四馈网络的有源集成GNSS天线设计
4区 计算机科学
International Journal of Antennas and Propagation Pub Date : 2023-11-06 DOI: 10.1155/2023/3828460
Yao Wang, Hongmei Liu, Shuo Li, Zhongbao Wang, Shaojun Fang
{"title":"Design of Active Integrated GNSS Antenna Based on the Impedance Transforming Quadrature Four-Feed Network","authors":"Yao Wang, Hongmei Liu, Shuo Li, Zhongbao Wang, Shaojun Fang","doi":"10.1155/2023/3828460","DOIUrl":"https://doi.org/10.1155/2023/3828460","url":null,"abstract":"In the paper, a wideband miniaturized impedance-transforming quadrature four-feed network with a flat output phase difference is presented and applied to the design of an active integrated GNSS antenna where no extra impedance matching circuit is needed. The features of impedance transformation and flat output phase difference are achieved by the proposed miniaturized rat-race coupler. When combining the proposed rat-race coupler with two trans-directional (TRD) couplers, a four-feed network with stable sequential quadrature phase shifts is obtained in the whole GNSS band. Since the quadrature four-feed network has the feature of impedance transformation, integration with a low-noise amplifier (LNA) can be realized without extra impedance matching circuits, which reduce the overall size and losses. For validation, a simple rectangular patch is applied as the radiator, and the active prototype is fabricated. Measurement results show that over the entire GNSS band from 1.164 GHz to 1.610 GHz, the miniaturized integrated antenna exhibits a return loss of more than 10 dB, an axial ratio of less than 3 dB axial ratio, and a gain of greater than 16 dBic.","PeriodicalId":54392,"journal":{"name":"International Journal of Antennas and Propagation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135589716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Improved GOMP Sparse Channel Estimation for Vehicle-to-Vehicle Communications 基于改进GOMP稀疏信道估计的车对车通信
4区 计算机科学
International Journal of Antennas and Propagation Pub Date : 2023-11-06 DOI: 10.1155/2023/5281547
Xin Chen, Xudong Zhang, Yaolin Zhu, Ruiqing Ma
{"title":"An Improved GOMP Sparse Channel Estimation for Vehicle-to-Vehicle Communications","authors":"Xin Chen, Xudong Zhang, Yaolin Zhu, Ruiqing Ma","doi":"10.1155/2023/5281547","DOIUrl":"https://doi.org/10.1155/2023/5281547","url":null,"abstract":"Reliable channel estimation is critical for wireless communication performance, especially in vehicle-to-vehicle (V2V) communication scenarios. Aiming at the major challenges of channel tracking and estimating as the highly dynamic nature of vehicle environments, an improved generalized orthogonal matching pursuit (iGOMP) is proposed for V2V channel estimation. The iGOMP algorithm transforms the channel estimation problem into a sparse signal recovery problem and replaces the classical inner product criterion with the Dice atom matching criterion. Additionally, the atomic weak progressive selection method is integrated to avoid the suboptimal selection of atoms from the redundant dictionary using the inner product criterion. The proposed iGOMP method can achieve optimal channel estimation by iterating feedback results. Simulation results demonstrate that the iGOMP method has superior estimation accuracy, mean square error (MSE), and bit error rate (BER) performance compared with traditional channel estimation methods in V2V communications.","PeriodicalId":54392,"journal":{"name":"International Journal of Antennas and Propagation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135589552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Contact-Less Electrically Small Antenna Sensor for Retinal Cancer Cell Detection 一种用于视网膜癌细胞检测的非接触式小天线传感器
4区 计算机科学
International Journal of Antennas and Propagation Pub Date : 2023-10-27 DOI: 10.1155/2023/5516412
Shaik Rizwan, Kanaparthi V. Phani Kumar, P. Sandeep Kumar, Sachin Kumar
{"title":"A Contact-Less Electrically Small Antenna Sensor for Retinal Cancer Cell Detection","authors":"Shaik Rizwan, Kanaparthi V. Phani Kumar, P. Sandeep Kumar, Sachin Kumar","doi":"10.1155/2023/5516412","DOIUrl":"https://doi.org/10.1155/2023/5516412","url":null,"abstract":"A new noninvasive and portable diagnostic system for detecting ocular tumors has been proposed. The system uses a contact-less electrically small antenna sensor to detect retinal cancer cells. The antenna sensor is operated in the ISM (Industrial, Scientific, and Medical) 2.413 GHz band and has electrical dimensions of 8 × 16.2 × 0.35 mm3. The antenna sensor is fabricated on a biodegradable Teslin substrate and tested in an eye-mimicking phantom to compare numerical computations with measurements. The specific absorption rate (SAR) obtained at near and far-field distances under 1 g of tissue is 1.18 W/kg and 0.353 W/kg, and that under 10 g of tissue is 0.112 W/kg and 0.313 W/kg, respectively. Furthermore, to detect the ocular tumor using the proposed antenna sensor, the resonance frequency shift, and the unsupervised machine learning technique, principle component analysis (PCA) is employed on simulated and measured results. The resonance frequency shift for a 3.5 mm radius tumor is 70 MHz for a single tumor and 120 MHz for double tumors. The PCA generates clusters with and without tumors on the positive and negative sides of the two-dimensional plot. The proposed techniques are more impactful in distinguishing between healthy and malignant tissues. The proposed systematic approach could be a portable platform for early detection of cancerous cells inside the eye.","PeriodicalId":54392,"journal":{"name":"International Journal of Antennas and Propagation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136318459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A High-Efficient Method for Synthesizing Multiple Antenna Array Radiation Patterns Simultaneously Based on Convolutional Neural Network 基于卷积神经网络的多天线阵辐射方向图高效同时合成方法
4区 计算机科学
International Journal of Antennas and Propagation Pub Date : 2023-10-17 DOI: 10.1155/2023/6666997
Shiyuan Zhang, Chuan Shi, Ming Bai
{"title":"A High-Efficient Method for Synthesizing Multiple Antenna Array Radiation Patterns Simultaneously Based on Convolutional Neural Network","authors":"Shiyuan Zhang, Chuan Shi, Ming Bai","doi":"10.1155/2023/6666997","DOIUrl":"https://doi.org/10.1155/2023/6666997","url":null,"abstract":"This paper proposes a high-efficient method that utilizes deep learning technology for synthesizing multiple antenna array radiation patterns simultaneously. More in details, the mathematical feasibility of using neural networks to optimize and synthesize radiation patterns of antenna arrays is demonstrated. Boundary functions are designed to reshape the important characteristics of target radiation patterns and transform them into a two-channel mask matrix, allowing for the simultaneous input of multiple target radiation patterns into the neural network without sacrificing computational efficiency. During training, the cost function is designed to represent the difference between each synthesized radiation pattern and the corresponding target radiation pattern, guiding self-learning. The main framework of the method is a convolutional neural network, where the convolutional layer is used to reduce the expansion of input parameters due to the simultaneous input of multiple mask matrices. Simulation experiments have been conducted to synthesize multiple incoherent target radiation patterns simultaneously on a patch antenna array layout, and the computation time is compared with the combined time required to compute each one individually. The results demonstrate that this method offers the advantage of computational efficiency for simultaneous synthesis of multiple incoherent radiation patterns.","PeriodicalId":54392,"journal":{"name":"International Journal of Antennas and Propagation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135994669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Real-Time Implementation of a Novel Design Approach for Sub-GHz Long-Range Antenna for Smart Internet of Things Communication 一种用于智能物联网通信的Sub-GHz远程天线的实时实现
4区 计算机科学
International Journal of Antennas and Propagation Pub Date : 2023-10-16 DOI: 10.1155/2023/8602885
Sneha Bhardwaj, Praveen Kumar Malik, Anish Gupta, Rajesh Singh
{"title":"Real-Time Implementation of a Novel Design Approach for Sub-GHz Long-Range Antenna for Smart Internet of Things Communication","authors":"Sneha Bhardwaj, Praveen Kumar Malik, Anish Gupta, Rajesh Singh","doi":"10.1155/2023/8602885","DOIUrl":"https://doi.org/10.1155/2023/8602885","url":null,"abstract":"This research article designs and develops a planar small-size antenna design for smart Internet of Things (IoT) communication with long-range technology (LoRa). The proposed system is best suited for transceiver systems in this automation and sensing era. In the proposed antenna, the ground, the radiating element, and the stub feed are designed on the same side of the substrate, keeping in mind that it can print the LoRa module. The design consists of a meandered monopole, a dipole structure as a ground, and a stub feed. A different design approach is employed to get an optimized result. The antenna is made up of a rectangular feed stub to which a connecting wire is attached. The overall dimension of the antenna is 55 m × 55 m × 1.6 mm. To verify the proposed design, an antenna was fabricated and measured, which covers the LoRa frequency band at 868 MHz, providing a sufficient bandwidth of 10 MHz and a gain of more than 0.5 dB in the operating band. A designed antenna is implemented for sensor data communication with the LoRa module device and device interface Arduino platform. The antenna is connected as a transmitter and receiver one by one to verify its performance with machine-to-machine communication using the LoRa module. The size, bandwidth, and radiation efficiency of this antenna are better than the antennas in the literature. The designed antenna is successfully implemented with LoRa connectivity and communicates the data up to 8 km in line-of-sight communication, more than 1 km in urban environments, and approximately 250 m of connectivity in building areas.","PeriodicalId":54392,"journal":{"name":"International Journal of Antennas and Propagation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136079770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信