{"title":"Agree to Disagree: Exploring Partial Semantic Consistency Against Visual Deviation for Compositional Zero-Shot Learning","authors":"Xiangyu Li;Xu Yang;Xi Wang;Cheng Deng","doi":"10.1109/TCDS.2024.3367957","DOIUrl":"10.1109/TCDS.2024.3367957","url":null,"abstract":"Compositional zero-shot learning (CZSL) aims to recognize novel concepts from known subconcepts. However, it is still challenging since the intricate interaction between subconcepts is entangled with their corresponding visual features, which affects the recognition accuracy of concepts. Besides, the domain gap between training and testing data leads to the model poor generalization. In this article, we tackle these problems by exploring partial semantic consistency (PSC) to eliminate visual deviation to guarantee the discrimination and generalization of representations. Considering the complicated interaction between subconcepts and their visual features, we decompose seen images into visual elements according to their labels and obtain the instance-level subdeviations from compositions, which is utilized to excavate the category-level primitives of subconcepts. Furthermore, we present a multiscale concept composition (MSCC) approach to produce virtual samples from two aspects, which augments the sufficiency and diversity of samples so that the proposed model can generalize to novel compositions. Extensive experiments indicate that our method significantly outperforms the state-of-the-art approaches on three benchmark datasets.","PeriodicalId":54300,"journal":{"name":"IEEE Transactions on Cognitive and Developmental Systems","volume":"16 4","pages":"1433-1444"},"PeriodicalIF":5.0,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139954276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Compressed Video Anomaly Detection of Human Behavior Based on Abnormal Region Determination","authors":"Lijun He;Miao Zhang;Hao Liu;Liejun Wang;Fan Li","doi":"10.1109/TCDS.2024.3367493","DOIUrl":"10.1109/TCDS.2024.3367493","url":null,"abstract":"Video anomaly detection has a wide range of applications in video monitoring-related scenarios. The existing image-domain-based anomaly detection algorithms usually require completely decoding the received videos, complex information extraction, and network structure, which makes them difficult to be implemented directly. In this article, we focus on anomaly detection directly for compressed videos. The compressed videos need not be fully decoded and auxiliary information can be obtained directly, which have low computational complexity. We propose a compressed video anomaly detection algorithm based on accurate abnormal region determination (ARD-VAD), which is suitable to be deployed on edge servers. First, to ensure the overall low complexity and save storage space, we sparsely sample the prior knowledge of I-frame representing the appearance information and motion vector (MV) representing the motion information from compressed videos. Based on the sampled information, a two-branch network structure, which consists of MV reconstruction branch and future I-frame prediction branch, is designed. Specifically, the two branches are connected by an attention network based on the MV residuals to guide the prediction network to focus on the abnormal regions. Furthermore, to emphasize the abnormal regions, we develop an adaptive sensing of abnormal regions determination module based on motion intensity represented by the second derivative of MV. This module can enhance the difference of the real anomaly region between the generated frame and the current frame. The experiments show that our algorithm can achieve a good balance between performance and complexity.","PeriodicalId":54300,"journal":{"name":"IEEE Transactions on Cognitive and Developmental Systems","volume":"16 4","pages":"1462-1475"},"PeriodicalIF":5.0,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139954150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Deep Reinforcement Learning With Multicritic TD3 for Decentralized Multirobot Path Planning","authors":"Heqing Yin;Chang Wang;Chao Yan;Xiaojia Xiang;Boliang Cai;Changyun Wei","doi":"10.1109/TCDS.2024.3368055","DOIUrl":"10.1109/TCDS.2024.3368055","url":null,"abstract":"Centralized multirobot path planning is a prevalent approach involving a global planner computing feasible paths for each robot using shared information. Nonetheless, this approach encounters limitations due to communication constraints and computational complexity. To address these challenges, we introduce a novel decentralized multirobot path planning approach that eliminates the need for sharing the states and intentions of robots. Our approach harnesses deep reinforcement learning and features an asynchronous multicritic twin delayed deep deterministic policy gradient (AMC-TD3) algorithm, which enhances the original gate recurrent unit (GRU)-attention-based TD3 algorithm by incorporating a multicritic network and employing an asynchronous training mechanism. By training each critic with a unique reward function, our learned policy enables each robot to navigate toward its long-term objective without colliding with other robots in complex environments. Furthermore, our reward function, grounded in social norms, allows the robots to naturally avoid each other in congested situations. Specifically, we train three critics to encourage each robot to achieve its long-term navigation goal, maintain its moving direction, and prevent collisions with other robots. Our model can learn an end-to-end navigation policy without relying on an accurate map or any localization information, rendering it highly adaptable to various environments. Simulation results reveal that our proposed approach surpasses baselines in several environments with different levels of complexity and robot populations.","PeriodicalId":54300,"journal":{"name":"IEEE Transactions on Cognitive and Developmental Systems","volume":"16 4","pages":"1233-1247"},"PeriodicalIF":5.0,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139954488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Editorial IEEE Transactions on Cognitive and Developmental Systems","authors":"Huajin Tang","doi":"10.1109/TCDS.2024.3353515","DOIUrl":"https://doi.org/10.1109/TCDS.2024.3353515","url":null,"abstract":"As we usher into the new year of 2024, in my capacity as the Editor-in-Chief of the IEEE Transactions on Cognitive and Developmental Systems (TCDS), I am happy to extend to you a tapestry of New Year greetings, may this year be filled with prosperity, success, and groundbreaking achievements in our shared fields.","PeriodicalId":54300,"journal":{"name":"IEEE Transactions on Cognitive and Developmental Systems","volume":"16 1","pages":"3-3"},"PeriodicalIF":5.0,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10419123","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139676042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yang Tang;Wei Lin;Chenguang Yang;Nicola Gatti;Gary G. Yen
{"title":"Guest Editorial Special Issue on Cognitive Learning of Multiagent Systems","authors":"Yang Tang;Wei Lin;Chenguang Yang;Nicola Gatti;Gary G. Yen","doi":"10.1109/TCDS.2023.3325505","DOIUrl":"https://doi.org/10.1109/TCDS.2023.3325505","url":null,"abstract":"The development and cognition of biological and intelligent individuals shed light on the development of cognitive, autonomous, and evolutionary robotics. Take the collective behavior of birds as an example, each individual effectively communicates information and learns from multiple neighbors, facilitating cooperative decision making among them. These interactions among individuals illuminate the growth and cognition of natural groups throughout the evolutionary process, and they can be effectively modeled as multiagent systems. Multiagent systems have the ability to solve problems that are difficult or impossible for an individual agent or a monolithic system to solve, which also improves the robustness and efficiency through collaborative learning. Multiagent learning is playing an increasingly important role in various fields, such as aerospace systems, intelligent transportation, smart grids, etc. With the environment growing increasingly intricate, characterized by factors, such as high dynamism and incomplete/imperfect observational data, the challenges associated with various tasks are escalating. These challenges encompass issues like information sharing, the definition of learning objectives, and grappling with the curse of dimensionality. Unfortunately, many of the existing methods are struggling to effectively address these multifaceted issues in the realm of cognitive intelligence. Furthermore, the field of cognitive learning in multiagent systems underscores the efficiency of distributed learning, demonstrating the capacity to acquire the skill of learning itself collectively. In light of this, multiagent learning, while holding substantial research significance, confronts a spectrum of learning problems that span from single to multiple agents, simplicity to complexity, low dimensionality to high dimensionality, and one domain to various other domains. Agents autonomously and rapidly make swarm intelligent decisions through cognitive learning overcoming the above challenges, which holds significant importance for the advancement of various practical fields.","PeriodicalId":54300,"journal":{"name":"IEEE Transactions on Cognitive and Developmental Systems","volume":"16 1","pages":"4-7"},"PeriodicalIF":5.0,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10419126","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139676039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"IEEE Transactions on Cognitive and Developmental Systems Publication Information","authors":"","doi":"10.1109/TCDS.2024.3352771","DOIUrl":"https://doi.org/10.1109/TCDS.2024.3352771","url":null,"abstract":"","PeriodicalId":54300,"journal":{"name":"IEEE Transactions on Cognitive and Developmental Systems","volume":"16 1","pages":"C2-C2"},"PeriodicalIF":5.0,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10419103","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139676398","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"IEEE Transactions on Cognitive and Developmental Systems Information for Authors","authors":"","doi":"10.1109/TCDS.2024.3352775","DOIUrl":"https://doi.org/10.1109/TCDS.2024.3352775","url":null,"abstract":"","PeriodicalId":54300,"journal":{"name":"IEEE Transactions on Cognitive and Developmental Systems","volume":"16 1","pages":"C4-C4"},"PeriodicalIF":5.0,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10419135","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139676399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kendi Li;Weichen Huang;Wei Gao;Zijing Guan;Qiyun Huang;Jin-Gang Yu;Zhu Liang Yu;Yuanqing Li
{"title":"An Electroencephalography-Based Brain–Computer Interface for Emotion Regulation With Virtual Reality Neurofeedback","authors":"Kendi Li;Weichen Huang;Wei Gao;Zijing Guan;Qiyun Huang;Jin-Gang Yu;Zhu Liang Yu;Yuanqing Li","doi":"10.1109/TCDS.2024.3357547","DOIUrl":"10.1109/TCDS.2024.3357547","url":null,"abstract":"An increasing number of people fail to properly regulate their emotions for various reasons. Although brain–computer interfaces (BCIs) have shown potential in neural regulation, few effective BCI systems have been developed to assist users in emotion regulation. In this article, we propose an electroencephalography (EEG)-based BCI for emotion regulation with virtual reality (VR) neurofeedback. Specifically, music clips with positive, neutral, and negative emotions were first presented, based on which the participants were asked to regulate their emotions. The BCI system simultaneously collected the participants’ EEG signals and then assessed their emotions. Furthermore, based on the emotion recognition results, the neurofeedback was provided to participants in the form of a facial expression of a virtual pop star on a three-dimensional (3-D) virtual stage. Eighteen healthy participants achieved satisfactory performance with an average accuracy of 81.1% with neurofeedback. Additionally, the average accuracy increased significantly from 65.4% at the start to 87.6% at the end of a regulation trial (a trial corresponded to a music clip). In comparison, these participants could not significantly improve the accuracy within a regulation trial without neurofeedback. The results demonstrated the effectiveness of our system and showed that VR neurofeedback played a key role during emotion regulation.","PeriodicalId":54300,"journal":{"name":"IEEE Transactions on Cognitive and Developmental Systems","volume":"16 4","pages":"1405-1417"},"PeriodicalIF":5.0,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139954649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiahui Pan;Jie Liu;Jianhao Zhang;Xueli Li;Dongming Quan;Yuanqing Li
{"title":"Depression Detection Using an Automatic Sleep Staging Method With an Interpretable Channel-Temporal Attention Mechanism","authors":"Jiahui Pan;Jie Liu;Jianhao Zhang;Xueli Li;Dongming Quan;Yuanqing Li","doi":"10.1109/TCDS.2024.3358022","DOIUrl":"10.1109/TCDS.2024.3358022","url":null,"abstract":"Despite previous efforts in depression detection studies, there is a scarcity of research on automatic depression detection using sleep structure, and several challenges remain: 1) how to apply sleep staging to detect depression and distinguish easily misjudged classes; and 2) how to adaptively capture attentive channel-dimensional information to enhance the interpretability of sleep staging methods. To address these challenges, an automatic sleep staging method based on a channel-temporal attention mechanism and a depression detection method based on sleep structure features are proposed. In sleep staging, a temporal attention mechanism is adopted to update the feature matrix, confidence scores are estimated for each sleep stage, the weight of each channel is adjusted based on these scores, and the final results are obtained through a temporal convolutional network. In depression detection, seven sleep structure features based on the results of sleep staging are extracted for depression detection between unipolar depressive disorder (UDD) patients, bipolar disorder (BD) patients, and healthy subjects. Experiments demonstrate the effectiveness of the proposed approaches, and the visualization of the channel attention mechanism illustrates the interpretability of our method. Additionally, this is the first attempt to employ sleep structure features to automatically detect UDD and BD in patients.","PeriodicalId":54300,"journal":{"name":"IEEE Transactions on Cognitive and Developmental Systems","volume":"16 4","pages":"1418-1432"},"PeriodicalIF":5.0,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139954268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}