Raveendra Pilli;Tripti Goel;R. Murugan;M. Tanveer;P. N. Suganthan
{"title":"基于核岭回归的脑年龄分类与估算随机网络","authors":"Raveendra Pilli;Tripti Goel;R. Murugan;M. Tanveer;P. N. Suganthan","doi":"10.1109/TCDS.2024.3349593","DOIUrl":null,"url":null,"abstract":"Accelerated brain aging and abnormalities are associated with variations in brain patterns. Effective and reliable assessment methods are required to accurately classify and estimate brain age. In this study, a brain age classification and estimation framework is proposed using structural magnetic resonance imaging (sMRI) scans, a 3-D convolutional neural network (3-D-CNN), and a kernel ridge regression-based random vector functional link (KRR-RVFL) network. We used 480 brain MRI images from the publicly availabel IXI database and segmented them into gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) images to show age-related associations by region. Features from MRI images are extracted using 3-D-CNN and fed into the wavelet KRR-RVFL network for brain age classification and prediction. The proposed algorithm achieved high classification accuracy, 97.22%, 99.31%, and 95.83% for GM, WM, and CSF regions, respectively. Moreover, the proposed algorithm demonstrated excellent prediction accuracy with a mean absolute error (MAE) of \n<inline-formula><tex-math>$3.89$</tex-math></inline-formula>\n years, \n<inline-formula><tex-math>$3.64$</tex-math></inline-formula>\n years, and \n<inline-formula><tex-math>$4.49$</tex-math></inline-formula>\n years for GM, WM, and CSF regions, confirming that changes in WM volume are significantly associated with normal brain aging. Additionally, voxel-based morphometry (VBM) examines age-related anatomical alterations in different brain regions in GM, WM, and CSF tissue volumes.","PeriodicalId":54300,"journal":{"name":"IEEE Transactions on Cognitive and Developmental Systems","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10405861","citationCount":"0","resultStr":"{\"title\":\"Kernel-Ridge-Regression-Based Randomized Network for Brain Age Classification and Estimation\",\"authors\":\"Raveendra Pilli;Tripti Goel;R. Murugan;M. Tanveer;P. N. Suganthan\",\"doi\":\"10.1109/TCDS.2024.3349593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accelerated brain aging and abnormalities are associated with variations in brain patterns. Effective and reliable assessment methods are required to accurately classify and estimate brain age. In this study, a brain age classification and estimation framework is proposed using structural magnetic resonance imaging (sMRI) scans, a 3-D convolutional neural network (3-D-CNN), and a kernel ridge regression-based random vector functional link (KRR-RVFL) network. We used 480 brain MRI images from the publicly availabel IXI database and segmented them into gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) images to show age-related associations by region. Features from MRI images are extracted using 3-D-CNN and fed into the wavelet KRR-RVFL network for brain age classification and prediction. The proposed algorithm achieved high classification accuracy, 97.22%, 99.31%, and 95.83% for GM, WM, and CSF regions, respectively. Moreover, the proposed algorithm demonstrated excellent prediction accuracy with a mean absolute error (MAE) of \\n<inline-formula><tex-math>$3.89$</tex-math></inline-formula>\\n years, \\n<inline-formula><tex-math>$3.64$</tex-math></inline-formula>\\n years, and \\n<inline-formula><tex-math>$4.49$</tex-math></inline-formula>\\n years for GM, WM, and CSF regions, confirming that changes in WM volume are significantly associated with normal brain aging. Additionally, voxel-based morphometry (VBM) examines age-related anatomical alterations in different brain regions in GM, WM, and CSF tissue volumes.\",\"PeriodicalId\":54300,\"journal\":{\"name\":\"IEEE Transactions on Cognitive and Developmental Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10405861\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Cognitive and Developmental Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10405861/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cognitive and Developmental Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10405861/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Kernel-Ridge-Regression-Based Randomized Network for Brain Age Classification and Estimation
Accelerated brain aging and abnormalities are associated with variations in brain patterns. Effective and reliable assessment methods are required to accurately classify and estimate brain age. In this study, a brain age classification and estimation framework is proposed using structural magnetic resonance imaging (sMRI) scans, a 3-D convolutional neural network (3-D-CNN), and a kernel ridge regression-based random vector functional link (KRR-RVFL) network. We used 480 brain MRI images from the publicly availabel IXI database and segmented them into gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) images to show age-related associations by region. Features from MRI images are extracted using 3-D-CNN and fed into the wavelet KRR-RVFL network for brain age classification and prediction. The proposed algorithm achieved high classification accuracy, 97.22%, 99.31%, and 95.83% for GM, WM, and CSF regions, respectively. Moreover, the proposed algorithm demonstrated excellent prediction accuracy with a mean absolute error (MAE) of
$3.89$
years,
$3.64$
years, and
$4.49$
years for GM, WM, and CSF regions, confirming that changes in WM volume are significantly associated with normal brain aging. Additionally, voxel-based morphometry (VBM) examines age-related anatomical alterations in different brain regions in GM, WM, and CSF tissue volumes.
期刊介绍:
The IEEE Transactions on Cognitive and Developmental Systems (TCDS) focuses on advances in the study of development and cognition in natural (humans, animals) and artificial (robots, agents) systems. It welcomes contributions from multiple related disciplines including cognitive systems, cognitive robotics, developmental and epigenetic robotics, autonomous and evolutionary robotics, social structures, multi-agent and artificial life systems, computational neuroscience, and developmental psychology. Articles on theoretical, computational, application-oriented, and experimental studies as well as reviews in these areas are considered.