{"title":"Parallel-plate avalanche counters for heavy-ion beam tracking: History and mysteries","authors":"Salvatore Di Carlo, Marco Cortesi","doi":"10.1103/physrevaccelbeams.27.044801","DOIUrl":"https://doi.org/10.1103/physrevaccelbeams.27.044801","url":null,"abstract":"","PeriodicalId":54297,"journal":{"name":"Physical Review Accelerators and Beams","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140656695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. Mansten, R. Svärd, S. Thorin, Mikael Eriksson, Pedro Fernandes Tavares
{"title":"Cancellation of klystron-induced energy and arrival-time variations in linear accelerators with arc-type bunch compressors","authors":"E. Mansten, R. Svärd, S. Thorin, Mikael Eriksson, Pedro Fernandes Tavares","doi":"10.1103/physrevaccelbeams.27.040401","DOIUrl":"https://doi.org/10.1103/physrevaccelbeams.27.040401","url":null,"abstract":"","PeriodicalId":54297,"journal":{"name":"Physical Review Accelerators and Beams","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140660245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H. Y. Liu, Y. S. Yuan, S. Y. Xu, L. S. Huang, X. H. Lu, S. Wang
{"title":"Matched phase sweep method for the optimization of bunching factor in dual rf systems of high-intensity hadron synchrotrons","authors":"H. Y. Liu, Y. S. Yuan, S. Y. Xu, L. S. Huang, X. H. Lu, S. Wang","doi":"10.1103/physrevaccelbeams.27.044201","DOIUrl":"https://doi.org/10.1103/physrevaccelbeams.27.044201","url":null,"abstract":"","PeriodicalId":54297,"journal":{"name":"Physical Review Accelerators and Beams","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140665710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. J. Wu, D. Y. Li, T. Yang, Y. Z. Li, H. Cheng, Y. D. Xia, Y. Yan, Y. L. Fang, K. Zhu, M. J. Easton, C. Lin, X. Q. Yan
{"title":"Emittance growth analysis of laser-driven broad energy spectral proton beams","authors":"M. J. Wu, D. Y. Li, T. Yang, Y. Z. Li, H. Cheng, Y. D. Xia, Y. Yan, Y. L. Fang, K. Zhu, M. J. Easton, C. Lin, X. Q. Yan","doi":"10.1103/physrevaccelbeams.27.041303","DOIUrl":"https://doi.org/10.1103/physrevaccelbeams.27.041303","url":null,"abstract":"With the rapid development of high-gradient laser plasma acceleration, implementing it in practical applications has become a priority. However, to go from “acceleration” to “accelerator,” a beam line system is required to accurately control the beam parameters according to different irradiation requirements. The laser-accelerated proton beam is characterized by a micron-scale original source size and a small emittance as low as 0.004 mm mrad [T. E. Cowan <i>et al.</i>, <span>Phys. Rev. Lett.</span> <b>92</b>, 204801 (2004)]. However, due to the broad energy spread and large divergence, its initial ultralow emittance will increase rapidly in the subsequent transmission process. This indicates that designing a beamline for laser-driven protons is challenging and differs significantly from that of a conventional accelerator. As a fundamental parameter for beam line design, we have theoretically derived the emittance growth law for laser-driven protons in both drift space and in a focusing element. The results demonstrate that the beam emittance deteriorates sharply with the energy spread and the square of the divergence angle. These theoretical calculations have been verified both in experiments and simulations. This work is helpful for designing subsequent beam lines that pursue high transmission efficiency and achromatic ability.","PeriodicalId":54297,"journal":{"name":"Physical Review Accelerators and Beams","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140635291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ki Moon Nam, Ji-Gwang Hwang, Young Dae Yoon, Yong Woon Parc
{"title":"Revised Hamiltonian near third-integer resonance and implications for an electron storage ring","authors":"Ki Moon Nam, Ji-Gwang Hwang, Young Dae Yoon, Yong Woon Parc","doi":"10.1103/physrevaccelbeams.27.044001","DOIUrl":"https://doi.org/10.1103/physrevaccelbeams.27.044001","url":null,"abstract":"In electron storage rings, an accurate description of particle dynamics near third-integer resonance is crucial for various applications. The conventional approach is to extrapolate far-resonance dynamics to near resonance, but the difficulty arises because the nonlinear detuning parameter diverges at this critical point. Here we derive, via a suitable application of the canonical perturbation theory, a revised detuning parameter that is well behaved near resonance. The resultant theory accurately describes the morphology of resonance islands for a wide range of parameter space and facilitates its optimization.","PeriodicalId":54297,"journal":{"name":"Physical Review Accelerators and Beams","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140616648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H. Gong, W. Fang, J. Tan, X. Huang, C. Wang, Y. Xu, Z. Zhao
{"title":"Design of a dual-mode transverse deflecting structure using neural network and multiobjective algorithms","authors":"H. Gong, W. Fang, J. Tan, X. Huang, C. Wang, Y. Xu, Z. Zhao","doi":"10.1103/physrevaccelbeams.27.042001","DOIUrl":"https://doi.org/10.1103/physrevaccelbeams.27.042001","url":null,"abstract":"Shanghai Synchrotron Radiation Facility/Shanghai Soft X-ray FEL Facility is currently developing an advanced variable polarization transverse deflecting structure TTDS (two-mode transverse deflecting structure) using a dual-mode rf structure concept. Driven by two different rf power sources, this novel TDS works using both the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>HEM</mi><mn>11</mn></msub></math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>HEM</mi><mn>12</mn></msub></math> modes for simultaneous vertical and horizontal deflections, consequently, it can provide a time-varying polarization of the electrical field at ultrafast speeds. It is capable of producing circular and elliptical polarizations as well as flexible vector combinations through amplitude and phase modulation from a low-level rf system. The work presented in this paper is focused on the analysis and design of the variable polarization TDS, consisting of dual-mode cells and two dual-mode couplers. Designing and optimizing for dual-mode design and optimization is complex; consequently, an advanced optimization procedure based on neural networks and multiobjective algorithms has been developed. This improves the accuracy and efficiency of the rf structure design process. Through iterations, the dual-mode cells in the final design are optimized for high impedance and other rf performance criteria for both the <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>HEM</mi><mn>11</mn></msub></math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>HEM</mi><mn>12</mn></msub></math> modes. The two couplers for rf power input and output are also optimized. Based on the optimized design and rf sensitivity analysis, the mechanical design has been completed and is now ready for manufacture.","PeriodicalId":54297,"journal":{"name":"Physical Review Accelerators and Beams","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140616641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
F. J. Cullinan, Å. Andersson, J. Breunlin, M. Brosi, P. F. Tavares
{"title":"Experimental observation of a mode-1 instability driven by Landau cavities in a storage ring","authors":"F. J. Cullinan, Å. Andersson, J. Breunlin, M. Brosi, P. F. Tavares","doi":"10.1103/physrevaccelbeams.27.044403","DOIUrl":"https://doi.org/10.1103/physrevaccelbeams.27.044403","url":null,"abstract":"Landau cavities used to lengthen the bunches in storage rings necessarily constitute a significant impedance. Because of the particular phase of the field required for bunch lengthening, they are often detuned quite considerably from resonance, more so than the main cavities. As a result, their impedance can excite the first coupled-bunch mode such that it becomes unstable. This phenomenon has previously been predicted [M. Venturini, <span>Phys. Rev. Accel. Beams</span> <b>21</b>, 114404 (2018)] and characterized in simulations [T. He, <span>Phys. Rev. Accel. Beams</span> <b>25</b>, 024401 (2022)] but experimental observation is yet to be documented. In this paper, the experimental observation of coupled-bunch modes-<math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>±</mo><mn>1</mn></math> excited by the Landau and main cavities in a fourth-generation light-source storage ring is presented. Features of the instability such as amplitude and coherent frequency at saturation have been measured and its dependency on the main rf voltage has been explored. The impact of a parked main cavity has also been investigated.","PeriodicalId":54297,"journal":{"name":"Physical Review Accelerators and Beams","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Romero Francia, A. Perillo Marcone, S. Pianese, K. Andersen, G. Arnau Izquierdo, J. A. Briz, D. Carbajo Perez, E. Carlier, T. Coiffet, L. S. Esposito, J. L. Grenard, D. Grenier, J. Humbert, K. Kershaw, J. Lendaro, A. Ortega Rolo, K. Scibor, D. Senajova, S. Sgobba, C. Sharp, D. Steyaert, F. M. Velotti, H. Vincke, V. Vlachoudis, M. Calviani
{"title":"Design and early operation of a new-generation internal beam dump for CERN’s Super Proton Synchrotron","authors":"A. Romero Francia, A. Perillo Marcone, S. Pianese, K. Andersen, G. Arnau Izquierdo, J. A. Briz, D. Carbajo Perez, E. Carlier, T. Coiffet, L. S. Esposito, J. L. Grenard, D. Grenier, J. Humbert, K. Kershaw, J. Lendaro, A. Ortega Rolo, K. Scibor, D. Senajova, S. Sgobba, C. Sharp, D. Steyaert, F. M. Velotti, H. Vincke, V. Vlachoudis, M. Calviani","doi":"10.1103/physrevaccelbeams.27.043001","DOIUrl":"https://doi.org/10.1103/physrevaccelbeams.27.043001","url":null,"abstract":"The Super Proton Synchrotron (SPS) is the last stage in the injector chain for CERN’s Large Hadron Collider, and it also provides proton and ion beams for several fixed-target experiments. The SPS has been in operation since 1976, and it has been upgraded over the years. For the SPS to operate safely, its internal beam dump must be able to repeatedly absorb the energy of the circulating beams without sustaining damage that would affect its function. The latest upgrades of the SPS led to the requirement for its beam dump to absorb proton beams with a momentum spectrum from 14 to <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>450</mn><mtext> </mtext><mtext> </mtext><mi>GeV</mi><mo>/</mo><mi>c</mi></mrow></math> and an average beam power of up to <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>∼</mo><mn>270</mn><mtext> </mtext><mtext> </mtext><mi>kW</mi></math>. This paper presents the technical details of a new design of the SPS beam dump that was installed in one of the long straight sections of the SPS during the 2019–2020 shutdown of CERN’s accelerator complex within the framework of the Large Hadron Collider Injectors Upgrade Project. This new beam dump has been in the operation since May 2021, and it is foreseen that it will operate with a lifetime of 20 years. The key challenges in the design of the beam dump were linked to the high levels of thermal energy to be dissipated—to avoid overheating and damage to the beam dump itself—and high induced levels of radiation, which have implications for personnel access to monitor the beam dump and repair any problems occurring during operation. The design process, therefore, included extensive thermomechanical finite-element simulations of the beam-dump core and its cooling system’s response to normal operation and worst-case scenarios for beam dumping. To ensure high thermal conductivity between the beam-dump core and its water-cooling system, hot isostatic pressing techniques were used in its manufacturing process. A comprehensive set of instrumentation was installed in the beam dump to monitor it during operation and to cross-check the numerical models with operational feedback. The beam dump and its infrastructure design were also optimized to ensure it can be maintained, repaired, or replaced while minimizing the radiation doses received by personnel.","PeriodicalId":54297,"journal":{"name":"Physical Review Accelerators and Beams","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140598945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sergey Tomin, Jan Kaiser, Nils Maris Lockmann, Torsten Wohlenberg, Igor Zagorodnov
{"title":"Undulator linear taper control at the European X-Ray Free-Electron Laser facility","authors":"Sergey Tomin, Jan Kaiser, Nils Maris Lockmann, Torsten Wohlenberg, Igor Zagorodnov","doi":"10.1103/physrevaccelbeams.27.042801","DOIUrl":"https://doi.org/10.1103/physrevaccelbeams.27.042801","url":null,"abstract":"Undulator tapering controls the resonance properties of the free-electron laser (FEL) amplification process. Wakefield energy losses in an undulator’s vacuum chamber are one of the factors that determine the undulator’s linear taper. While another contribution to energy losses, namely the losses due to spontaneous radiation, can be calculated analytically, estimating wakefield energy losses requires detailed knowledge of the chamber geometry and the electron beam current profile. We introduce a method for the automatic estimation of wakefield energy losses, which leverages noninvasive THz diagnostics, a current profile reconstruction algorithm enhanced with machine learning, and a recently developed analytical wakefield function for the European XFEL’s undulator beamline. The correctness of this method was validated by directly measuring wakefield-induced electron beam energy losses in the undulator section. This, in turn, enables the prediction of the optimal linear taper in the undulator.","PeriodicalId":54297,"journal":{"name":"Physical Review Accelerators and Beams","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}