{"title":"Collisional simulations of the modulator section in coherent electron cooling","authors":"A. Al Marzouk, B. Erdélyi","doi":"10.1103/physrevaccelbeams.27.044401","DOIUrl":null,"url":null,"abstract":"The first section of any coherent electron cooling (CeC) system is the modulator, where the density of the electron beam is modulated by the copropagating ion beam. This density modulation is a result of Coulomb collisions between the individual particles of the two beams. The pairwise, stochastic part of the interactions impacts the overall performance of the CeC process. We present the first simulations of the density modulations of the electron beams from a collisional picture of the dynamics, considering the proof-of-principle CeC experiments at Brookhaven National Laboratory. These simulations were performed using PHAD, which is the first efficient, large-scale collisional numerical method in beam physics that we have previously developed and benchmarked. Realistic beam distributions and external fields have been optimized to provide strong modulation signals necessary for variations of coherent electron cooling systems. Cooling performance limits and potential collisionless simulation pitfalls are pointed out.","PeriodicalId":54297,"journal":{"name":"Physical Review Accelerators and Beams","volume":"79 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Accelerators and Beams","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevaccelbeams.27.044401","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
The first section of any coherent electron cooling (CeC) system is the modulator, where the density of the electron beam is modulated by the copropagating ion beam. This density modulation is a result of Coulomb collisions between the individual particles of the two beams. The pairwise, stochastic part of the interactions impacts the overall performance of the CeC process. We present the first simulations of the density modulations of the electron beams from a collisional picture of the dynamics, considering the proof-of-principle CeC experiments at Brookhaven National Laboratory. These simulations were performed using PHAD, which is the first efficient, large-scale collisional numerical method in beam physics that we have previously developed and benchmarked. Realistic beam distributions and external fields have been optimized to provide strong modulation signals necessary for variations of coherent electron cooling systems. Cooling performance limits and potential collisionless simulation pitfalls are pointed out.
期刊介绍:
Physical Review Special Topics - Accelerators and Beams (PRST-AB) is a peer-reviewed, purely electronic journal, distributed without charge to readers and funded by sponsors from national and international laboratories and other partners. The articles are published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License.
It covers the full range of accelerator science and technology; subsystem and component technologies; beam dynamics; accelerator applications; and design, operation, and improvement of accelerators used in science and industry. This includes accelerators for high-energy and nuclear physics, synchrotron-radiation production, spallation neutron sources, medical therapy, and intense-beam applications.