SLAS Technology最新文献

筛选
英文 中文
Breast cancer promotes the expression of neurotransmitter receptor related gene groups and image simulation of prognosis model 乳腺癌促进神经递质受体相关基因组的表达及预后模型的图像模拟。
IF 2.5 4区 医学
SLAS Technology Pub Date : 2024-08-31 DOI: 10.1016/j.slast.2024.100183
{"title":"Breast cancer promotes the expression of neurotransmitter receptor related gene groups and image simulation of prognosis model","authors":"","doi":"10.1016/j.slast.2024.100183","DOIUrl":"10.1016/j.slast.2024.100183","url":null,"abstract":"<div><p>Breast cancer (BC), a prevalent and severe malignancy, detrimentally affects women globally. Its prognostic implications are profoundly influenced by gene expression patterns. This study retrieved 509 BCE-associated oncogenes and 1,012 neurotransmitter receptor-related genes from the GSEA and KEGG databases, intersecting to identify 98 relevant genes. Clinical and transcriptomic expression data related to BC were downloaded from the TCGA, and differential genes were identified based on an FDR value &lt;0.05 &amp; |log2FC| ≥ 0.585. Univariate analysis of these genes revealed that high expression of NSF and low expression of HRAS, KIF17, and RPS6KA1 are closely associated with BC survival prognosis. A prognostic model constructed for these four genes demonstrated significant prognostic relevance for BC-TCGA patients (<em>P</em> &lt; 0.001). Subsequently, an immunofunctional analysis of the BC oncogene-neurotransmitter receptor-related gene cluster revealed the involvement of immune cells such as T cells CD8, T cells CD4 memory resting, and Macrophages M2. Further analysis indicated that immune functions were primarily concentrated in APC_co_inhibition, APC_co_stimulation, CCR, and Check-point, among others. Lastly, a prognostic nomogram model was established, and ROC curve analysis revealed that the nomogram is a vital indicator for assessing BC prognosis, with 1-year, 3-year, and 5-year survival rates of 0.981, 0.897, and 0.802, respectively. This model demonstrates high calibration, clinical utility, and predictive capability, promising to offer an effective preliminary tool for clinical diagnostics.</p></div>","PeriodicalId":54248,"journal":{"name":"SLAS Technology","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2472630324000657/pdfft?md5=d7ce4b1eeca3a088e2432aaafca8d962&pid=1-s2.0-S2472630324000657-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142114745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep integration of low-cost liquid handling robots in an industrial pharmaceutical development environment 在工业制药开发环境中深度集成低成本液体处理机器人。
IF 2.5 4区 医学
SLAS Technology Pub Date : 2024-08-31 DOI: 10.1016/j.slast.2024.100180
{"title":"Deep integration of low-cost liquid handling robots in an industrial pharmaceutical development environment","authors":"","doi":"10.1016/j.slast.2024.100180","DOIUrl":"10.1016/j.slast.2024.100180","url":null,"abstract":"<div><p>The pharmaceutical industry is increasingly embracing laboratory automation to enhance experimental efficiency and operational resilience, particularly through the integration of automated liquid handlers (ALHs). This paper explores the integration of the low-cost Opentrons OT-2 liquid handling robot with F. Hoffmann-La Roche AG's in-house workflow orchestration software, AutoLab, to overcome barriers to lab automation. By leveraging the OT-2′s development-oriented interfaces and AutoLab's modular architecture, we achieved a user-friendly, cost-efficient, and flexible automation solution that aligns with FAIR (findable, accessible, interoperable, reusable) data principles. We demonstrate an advanced workflow development methodology, utilizing the software architecture, that facilitates the creation of two flexible pipetting protocols and medium complexity assays. This deep integration approach diminishes the learning curve for novice users while simultaneously enhancing the overall efficiency and reliability of the experimental workflow. Our findings suggest that such integrations can significantly mitigate the challenges associated with lab automation, including cost, complexity, and adaptability, paving the way for more accessible and robust automated systems in pharmaceutical research.</p></div>","PeriodicalId":54248,"journal":{"name":"SLAS Technology","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2472630324000621/pdfft?md5=d145d30056e4716d7085335eaf583030&pid=1-s2.0-S2472630324000621-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142121165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simulation of predicting atrial fibrosis in patients with paroxysmal atrial fibrillation during sinus node recovery time in optical imaging 在光学成像中模拟预测窦房结恢复时间内阵发性心房颤动患者的心房纤维化。
IF 2.5 4区 医学
SLAS Technology Pub Date : 2024-08-29 DOI: 10.1016/j.slast.2024.100186
{"title":"Simulation of predicting atrial fibrosis in patients with paroxysmal atrial fibrillation during sinus node recovery time in optical imaging","authors":"","doi":"10.1016/j.slast.2024.100186","DOIUrl":"10.1016/j.slast.2024.100186","url":null,"abstract":"<div><p>Paroxysmal atrial fibrillation is a common arrhythmia, and its development process and prediction of the degree of atrial fibrosis are of great significance for treatment and management. Optical imaging technology provides a new means for non-invasive observation of atrial electrical activity. The aim of this study is to investigate the predictive effect of sinus node recovery time on the degree of atrial fibrosis in patients with paroxysmal atrial fibrillation, and to provide a basis for the application of optical imaging technology in the study of atrial fibrosis. The study collected clinical and optical imaging data from a group of patients with paroxysmal atrial fibrillation, and used statistical analysis methods to investigate the relationship between sinus node recovery time and the degree of atrial fibrosis. The research results indicate that there is a significant correlation between the recovery time of the sinus node and the degree of atrial fibrosis, that is, there is a positive correlation between the prolonged recovery time of the sinus node and the aggravation of atrial fibrosis. SNRT can serve as an effective indicator for evaluating atrial matrix and can be applied to predict recurrence after catheter ablation of paroxysmal atrial fibrillation. Shortening SNRT through catheter ablation can become an important predictor of effective catheter ablation.</p></div>","PeriodicalId":54248,"journal":{"name":"SLAS Technology","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2472630324000682/pdfft?md5=a03223c271f7af58ee50d8e9c11b38c8&pid=1-s2.0-S2472630324000682-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142114747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on the mechanism of motor muscle control based on optical EEG images 基于光学脑电图图像的运动肌肉控制机制研究
IF 2.5 4区 医学
SLAS Technology Pub Date : 2024-08-28 DOI: 10.1016/j.slast.2024.100185
{"title":"Research on the mechanism of motor muscle control based on optical EEG images","authors":"","doi":"10.1016/j.slast.2024.100185","DOIUrl":"10.1016/j.slast.2024.100185","url":null,"abstract":"<div><p>The study of motor muscle control mechanisms can improve rehabilitation therapy and human-computer interaction technology. The limitations of traditional electroencephalography (EEG) limit the comprehensive understanding of motor muscle control mechanisms. Therefore, this study aims to explore the mechanism of motor muscle control based on optical EEG images, in order to expand the understanding of the process of motor control. The study selected optical EEG imaging technology as the main data acquisition tool. Optical EEG images have higher spatiotemporal resolution and can provide more detailed neural activity information. This technology combines optical imaging with EEG images to obtain spatiotemporal information of brain activity in a short period of time. The device is composed of multiple optical sensors and can measure blood oxygen concentration and neuronal activity in the cerebral cortex. Preprocess EEG image data using image processing and signal processing techniques, then use computational methods and algorithms to detect activated regions, and evaluate their relationships using correlation analysis and statistical methods. By comparing EEG image data and motor muscle activity data under different motor tasks. The research results show that optical EEG imaging technology can provide more detailed information on brain neural activity and accurately capture the activity patterns of different motor muscles. These results provide new perspectives and methods for further studying the control mechanisms of motor muscles.</p></div>","PeriodicalId":54248,"journal":{"name":"SLAS Technology","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2472630324000670/pdfft?md5=4e297f205a39f431c862ed52c8b2ee28&pid=1-s2.0-S2472630324000670-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142099165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bio-inspired EEG signal computing using machine learning and fuzzy theory for decision making in future-oriented brain-controlled vehicles 利用机器学习和模糊理论对脑电图信号进行生物启发计算,用于面向未来的脑控车辆决策。
IF 2.5 4区 医学
SLAS Technology Pub Date : 2024-08-28 DOI: 10.1016/j.slast.2024.100187
{"title":"Bio-inspired EEG signal computing using machine learning and fuzzy theory for decision making in future-oriented brain-controlled vehicles","authors":"","doi":"10.1016/j.slast.2024.100187","DOIUrl":"10.1016/j.slast.2024.100187","url":null,"abstract":"<div><p>One kind of autonomous vehicle that can take instructions from the driver by reading their electroencephalogram (EEG) signals using a Brain-Computer Interface (BCI) is called a Brain-Controlled Vehicle (BCV). The operation of such a vehicle is greatly affected by how well the BCI works. At present, there are limitations on the accuracy of BCI recognition, the number of distinguishable command categories, and the execution duration of command recognition. Consequently, vehicles that are exclusively controlled by EEG signals demonstrate suboptimal control performance. To address the difficulty of improving the control capabilities of brain-controlled cars while maintaining BCI performance, a fuzzy logic-based technique called as Fuzzy Brain-Control Fusion Control is introduced. This approach uses Fuzzy Discrete Event System (FDES) supervisory theory to verify the accuracy of the driver's brain-controlled directives. Concurrently, a fuzzy logic-based automatic controller is developed to generate decisions automatically in accordance with the present state of the vehicle via fuzzy reasoning. The final decision is then reached through the application of secondary fuzzy reasoning to the accuracy of the driver's instructions and the automated decisions to make adjustments that are more consistent with human intent. A clever BCI gadget known as the Consistent State Visual Evoked Potential (SSVEP) is utilized to show the viability of the proposed technique. We recommend that additional research should be conducted at this time to confirm that our recommended system may further improve the control execution of BCI-fueled cars, regardless of whether BCIs have special limitations.</p></div>","PeriodicalId":54248,"journal":{"name":"SLAS Technology","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2472630324000694/pdfft?md5=659f65be88dc46d1819fc63c1569b7a8&pid=1-s2.0-S2472630324000694-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142114744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Feasibility and safety study of advanced prostate biopsy robot system based on MR-TRUS Image flexible fusion technology in animal experiments 基于 MR-TRUS 图像灵活融合技术的先进前列腺活检机器人系统在动物实验中的可行性和安全性研究
IF 2.5 4区 医学
SLAS Technology Pub Date : 2024-08-28 DOI: 10.1016/j.slast.2024.100184
{"title":"Feasibility and safety study of advanced prostate biopsy robot system based on MR-TRUS Image flexible fusion technology in animal experiments","authors":"","doi":"10.1016/j.slast.2024.100184","DOIUrl":"10.1016/j.slast.2024.100184","url":null,"abstract":"<div><p>The advanced prostate biopsy robot system has broad application prospects in clinical practice, but due to the deformation and distortion between MR-TRUS (magnetic resonance transrectal ultrasound) images, it poses challenges in biopsy accuracy and safety. The study utilized an advanced prostate biopsy robot system based on MR-TRUS image flexible registration technology and conducted experiments on animal models. Retrospective analysis of the puncture accuracy of 12 animal experiments undergoing prostate puncture using MR-TRUS flexible registration technology from May 2022 to October 2023, and observation of intraoperative and 7-day postoperative complications. The study obtained MR-TRUS images and utilized image processing algorithms for registration to reduce image deformation and distortion. Then, precise positioning and operation are carried out through the robot system to execute the prostate biopsy program. The experimental results indicate that the advanced prostate biopsy robot system based on MR-TRUS image flexible registration technology has demonstrated good feasibility and safety in animal experiments. Image registration technology has successfully reduced image distortion and deformation, improving biopsy accuracy. The precise positioning and operation of robot systems play a crucial role in the biopsy process, reducing the occurrence of complications.</p></div>","PeriodicalId":54248,"journal":{"name":"SLAS Technology","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2472630324000669/pdfft?md5=bf16682709f9de99755e20b25cb3ef75&pid=1-s2.0-S2472630324000669-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142099164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantitative assessment of human motion for health and rehabilitation: A novel fuzzy comprehensive evaluation approach 定量评估人体运动以促进健康和康复:一种新颖的模糊综合评估方法
IF 2.5 4区 医学
SLAS Technology Pub Date : 2024-08-28 DOI: 10.1016/j.slast.2024.100181
{"title":"Quantitative assessment of human motion for health and rehabilitation: A novel fuzzy comprehensive evaluation approach","authors":"","doi":"10.1016/j.slast.2024.100181","DOIUrl":"10.1016/j.slast.2024.100181","url":null,"abstract":"<div><p>In the pursuit of advancing health and rehabilitation, the quintessence of human motion recognition technology has been underscored through its quantitative contributions to physical performance assessment. This research delineates the inception of a novel fuzzy comprehensive evaluation-based recognition method that stands at the forefront of such innovative endeavours. By synergistically fusing multi-sensor data and advanced classification algorithms, the proposed system offers a granular quantitative analysis with implications for health and fitness monitoring, particularly rehabilitation processes. Our methodological approach, grounded in the modal separation technique and Empirical Mode Decomposition (EMD), effectively distills the motion acceleration component from raw accelerometer data, facilitating the extraction of intricate motion patterns. Quantitative analysis revealed that our integrated framework significantly amplifies the accuracy of motion recognition, achieving an overall recognition rate of 90.03 %, markedly surpassing conventional methods, such as Support Vector Machines (SVM), Decision Trees (DT), and K-Nearest Neighbors (KNN), which hovered around 80 %. Moreover, the system demonstrated an unprecedented accuracy of 97 % in discerning minor left-right swaying motions, showcasing its robustness in evaluating subtle movement nuances—a paramount feature for rehabilitation and patient monitoring. This marked precision in motion recognition heralds a new paradigm in health assessment, enabling objective and scalable analysis pertinent to individualized therapeutic interventions. The experimental evaluation accentuates the system's adeptness at navigating the dichotomy between complex, intense motions and finer, subtler movements with a high fidelity rate. It substantiates the method's utility in delivering sophisticated, data-driven insights for rehabilitation trajectory monitoring.</p></div>","PeriodicalId":54248,"journal":{"name":"SLAS Technology","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2472630324000633/pdfft?md5=df3f2f78fefe8cacf7472db24f85932e&pid=1-s2.0-S2472630324000633-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142114746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diagnosis of acute hyperglycemia based on data-driven prediction models 基于数据驱动预测模型的急性高血糖诊断
IF 2.5 4区 医学
SLAS Technology Pub Date : 2024-08-28 DOI: 10.1016/j.slast.2024.100182
{"title":"Diagnosis of acute hyperglycemia based on data-driven prediction models","authors":"","doi":"10.1016/j.slast.2024.100182","DOIUrl":"10.1016/j.slast.2024.100182","url":null,"abstract":"<div><p>Acute hyperglycemia is a common endocrine and metabolic disorder that seriously threatens the health and life of patients. Exploring effective diagnostic methods and treatment strategies for acute hyperglycemia to improve treatment quality and patient satisfaction is currently one of the hotspots and difficulties in medical research. This article introduced a method for diagnosing acute hyperglycemia based on data-driven prediction models. In the experiment, clinical data from 1000 patients with acute hyperglycemia were collected. Through data cleaning and feature engineering, 10 features related to acute hyperglycemia were selected, including BMI (Body Mass Index), TG (triacylglycerol), HDL-C (High-density lipoprotein cholesterol), etc. The support vector machine (SVM) model was used for training and testing. The experimental results showed that the SVM model can effectively predict the occurrence of acute hyperglycemia, with an average accuracy of 96 %, a recall rate of 84 %, and an F1 value of 89 %. The diagnostic method for acute hyperglycemia based on data-driven prediction models has a certain reference value, which can be used as a clinical auxiliary diagnostic tool to improve the early diagnosis and treatment success rate of acute hyperglycemia patients.</p></div>","PeriodicalId":54248,"journal":{"name":"SLAS Technology","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2472630324000645/pdfft?md5=a00884f565141f22d42dbc0079216a94&pid=1-s2.0-S2472630324000645-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142099163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Establishment and validation of a risk stratification model for stroke risk within three years in patients with cerebral small vessel disease using a combined MRI and machine learning algorithm 利用磁共振成像和机器学习算法建立并验证脑小血管疾病患者三年内中风风险分层模型
IF 2.5 4区 医学
SLAS Technology Pub Date : 2024-08-21 DOI: 10.1016/j.slast.2024.100177
{"title":"Establishment and validation of a risk stratification model for stroke risk within three years in patients with cerebral small vessel disease using a combined MRI and machine learning algorithm","authors":"","doi":"10.1016/j.slast.2024.100177","DOIUrl":"10.1016/j.slast.2024.100177","url":null,"abstract":"<div><h3>Background</h3><p>Cerebral small vessel disease (CSVD) is a major cause of stroke, particularly in the elderly population, leading to significant morbidity and mortality. Accurate identification of high-risk patients and timing of stroke occurrence plays a crucial role in patient prevention and treatment. The study aimed to establish and validate a risk stratification model for stroke within three years in patients with CSVD using a combined MRI and machine learning algorithm approach.</p></div><div><h3>Methods</h3><p>The assessment encompassed demographic, clinical, biochemical, and MRI-derived parameters. Correlation analysis, logistic regression, receiver operating characteristic (ROC) curve analysis, and nnet neural network algorithm were employed to evaluate the predictive value of machine learning algorithms and MRI parameters for stroke occurrence within 3 years in patients with CSVD.</p></div><div><h3>Results</h3><p>MRI-derived parameters, including average WMH volume, perfusion deficit volume, ischemic core volume, microbleed count, and perivascular spaces, exhibited strong correlations with stroke occurrence (<em>P</em> &lt; 0.001). MRI-derived parameters demonstrated high sensitivities (0.719 to 0.906), specificities (0.704 to 0.877), and AUC values (0.815 to 0.871). The combined model of machine learning algorithms and MRI parameters yielded an AUC value of 0.925, indicating significantly high predictive accuracy for identifying the risk of stroke within three years in CSVD patients.</p></div><div><h3>Conclusion</h3><p>The integrated risk stratification model, incorporating machine learning algorithms and MRI parameters, demonstrated strong predictive potential for stroke within three years in patients with CSVD. This model offered valuable insights for personalized interventions and clinical decision-making in the management of CSVD.</p></div>","PeriodicalId":54248,"journal":{"name":"SLAS Technology","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2472630324000591/pdfft?md5=5b5fb18e030bda6475cb416a4a958798&pid=1-s2.0-S2472630324000591-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142001384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A microfluidic model for infantile in vitro digestions: Characterization of lactoferrin digestion 婴儿体外消化的微流体模型:乳铁蛋白消化的特征。
IF 2.5 4区 医学
SLAS Technology Pub Date : 2024-08-14 DOI: 10.1016/j.slast.2024.100175
{"title":"A microfluidic model for infantile in vitro digestions: Characterization of lactoferrin digestion","authors":"","doi":"10.1016/j.slast.2024.100175","DOIUrl":"10.1016/j.slast.2024.100175","url":null,"abstract":"<div><p>We present a miniaturized, flow-through model for infantile <em>in vitro</em> digestions, following up on our previously published <em>in vitro</em> digestive system for adults. Microfluidic ‘chaotic’ mixers were employed as microreactors to help emulate the biochemical processing going on in the infantile stomach and intestine. Simulated digestive fluids were introduced into these micromixers, and the mixtures were incubated for 60 min after both the gastric phase and the intestinal phase. The pH of the infantile stomach was set at 5.3, which is higher than that of adults. This leads to entirely different patterns of digestion for the milk protein, lactoferrin, used in our study as a model compound. It was found that lactoferrin remained undigested as it passed through the gastric phase and reached the intestinal phase intact, unlike in adult digestions. In the intestinal phase, lactoferrin was rapidly digested. Our miniaturized, infantile, <em>in vitro</em> digestive system requires much less labor and chemicals than standard approaches, and shows great potential for future automation.</p></div>","PeriodicalId":54248,"journal":{"name":"SLAS Technology","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2472630324000578/pdfft?md5=cb34d020f1470feb3b6b423332197279&pid=1-s2.0-S2472630324000578-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141996928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信