Azerbaijan Journal of Mathematics最新文献

筛选
英文 中文
On Bihypernomials Related to Balancing and Chebyshev Polynomials 关于平衡和切比雪夫多项式的双超项
IF 0.8
Azerbaijan Journal of Mathematics Pub Date : 2023-01-01 DOI: 10.59849/2218-6816.2023.2.200
D. Bród, A. Szynal-Liana
{"title":"On Bihypernomials Related to Balancing and Chebyshev Polynomials","authors":"D. Bród, A. Szynal-Liana","doi":"10.59849/2218-6816.2023.2.200","DOIUrl":"https://doi.org/10.59849/2218-6816.2023.2.200","url":null,"abstract":"","PeriodicalId":54116,"journal":{"name":"Azerbaijan Journal of Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71244524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Triangular Representation of the Solution to the Schrodinger Equation with an Additional Linear Potential 带附加线性势的薛定谔方程解的三角表示
IF 0.8
Azerbaijan Journal of Mathematics Pub Date : 2023-01-01 DOI: 10.59849/2218-6816.2023.2.100
A. Khanmamedov, D. H. Orudjov
{"title":"Triangular Representation of the Solution to the Schrodinger Equation with an Additional Linear Potential","authors":"A. Khanmamedov, D. H. Orudjov","doi":"10.59849/2218-6816.2023.2.100","DOIUrl":"https://doi.org/10.59849/2218-6816.2023.2.100","url":null,"abstract":"","PeriodicalId":54116,"journal":{"name":"Azerbaijan Journal of Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71244309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rothe Time-Discretization Method for Nolinear Parabolic Problems in Weighted Sobolev Space with Variable Exponents 变指数加权Sobolev空间中线性抛物问题的ro时间离散化方法
IF 0.8
Azerbaijan Journal of Mathematics Pub Date : 2023-01-01 DOI: 10.59849/2218-6816.2023.2.120
N. Elharrar, J. Igbida
{"title":"Rothe Time-Discretization Method for Nolinear Parabolic Problems in Weighted Sobolev Space with Variable Exponents","authors":"N. Elharrar, J. Igbida","doi":"10.59849/2218-6816.2023.2.120","DOIUrl":"https://doi.org/10.59849/2218-6816.2023.2.120","url":null,"abstract":"","PeriodicalId":54116,"journal":{"name":"Azerbaijan Journal of Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71244376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Norms of Maximal Functions between Generalized and Classical Lorentz Spaces 广义洛伦兹空间与经典洛伦兹空间之间极大函数的范数
IF 0.8
Azerbaijan Journal of Mathematics Pub Date : 2021-10-26 DOI: 10.59849/2218-6816.2023.2.51
R. Mustafayev, Nevin Bilgiccli, M. Yılmaz
{"title":"Norms of Maximal Functions between Generalized and Classical Lorentz Spaces","authors":"R. Mustafayev, Nevin Bilgiccli, M. Yılmaz","doi":"10.59849/2218-6816.2023.2.51","DOIUrl":"https://doi.org/10.59849/2218-6816.2023.2.51","url":null,"abstract":"In this paper we calculate the norm of the generalized maximal operator $M_{phi,Lambda^{alpha}(b)}$, defined with $0<alpha<infty$ and functions $b,,phi: (0,infty) rightarrow (0,infty)$ for all measurable functions $f$ on ${mathbb R}^n$ by begin{equation*} M_{phi,Lambda^{alpha}(b)}f(x) : = sup_{Q ni x} frac{|f chi_Q|_{Lambda^{alpha}(b)}}{phi (|Q|)}, qquad x in {mathbb R}^n, end{equation*} from ${operatorname{GGamma}}(p,m,v)$ into $Lambda^q(w)$. Here $Lambda^{alpha}(b)$ and ${operatorname{GGamma}}(p,m,w)$ are the classical and generalized Lorentz spaces, defined as a set of all measurable functions $f$ defined on ${mathbb R}^n$ for which $$ |f|_{Lambda^{alpha}(b)} = bigg( int_0^{infty} [f^*(s)]^{alpha} b(s),ds bigg)^{frac{1}{alpha}}<infty quad mbox{and} quad |f|_{{operatorname{GGamma}}(p,m,w)} = bigg( int_0^{infty} bigg( int_0^x [f^* (tau)]^p,dtau bigg)^{frac{m}{p}} v(x),dx bigg)^{frac{1}{m}}<infty, $$ respectively. We reduce the problem to the solution of the inequality begin{equation*} bigg( int_0^{infty} big[ T_{u,b}f^* (x)big]^q , w(x),dxbigg)^{frac{1}{q}} le C , bigg( int_0^{infty} bigg( int_0^x [f^* (tau)]^p,dtau bigg)^{frac{m}{p}} v(x),dx bigg)^{frac{1}{m}} end{equation*} where $w$ and $v$ are weight functions on $(0,infty)$. Here $f^*$ is the non-increasing rearrangement of $f$ defined on ${mathbb R}^n$ and $T_{u,b}$ is the iterated Hardy-type operator involving suprema, which is defined for a measurable non-negative function $f$ on $(0,infty)$ by $$ (T_{u,b} g)(t) : = sup_{tau in [t,infty)} frac{u(tau)}{B(tau)} int_0^{tau} g(s)b(s),ds,qquad t in (0,infty), $$ where $u$ and $b$ are appropriate weight functions on $(0,infty)$ and the function $B(t) : = int_0^t b(s),ds$ satisfies $0","PeriodicalId":54116,"journal":{"name":"Azerbaijan Journal of Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45007311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
On Ridge Functions 关于岭函数
IF 0.8
Azerbaijan Journal of Mathematics Pub Date : 2013-06-06 DOI: 10.1017/cbo9781316408124
A. Pinkus
{"title":"On Ridge Functions","authors":"A. Pinkus","doi":"10.1017/cbo9781316408124","DOIUrl":"https://doi.org/10.1017/cbo9781316408124","url":null,"abstract":"In this paper we survey some of the basic properties of linear combinationsof ridge functions.","PeriodicalId":54116,"journal":{"name":"Azerbaijan Journal of Mathematics","volume":"3 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2013-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"57121910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 84
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信