Norms of Maximal Functions between Generalized and Classical Lorentz Spaces

IF 0.6 Q3 MATHEMATICS
R. Mustafayev, Nevin Bilgiccli, M. Yılmaz
{"title":"Norms of Maximal Functions between Generalized and Classical Lorentz Spaces","authors":"R. Mustafayev, Nevin Bilgiccli, M. Yılmaz","doi":"10.59849/2218-6816.2023.2.51","DOIUrl":null,"url":null,"abstract":"In this paper we calculate the norm of the generalized maximal operator $M_{\\phi,\\Lambda^{\\alpha}(b)}$, defined with $0<\\alpha<\\infty$ and functions $b,\\,\\phi: (0,\\infty) \\rightarrow (0,\\infty)$ for all measurable functions $f$ on ${\\mathbb R}^n$ by \\begin{equation*} M_{\\phi,\\Lambda^{\\alpha}(b)}f(x) : = \\sup_{Q \\ni x} \\frac{\\|f \\chi_Q\\|_{\\Lambda^{\\alpha}(b)}}{\\phi (|Q|)}, \\qquad x \\in {\\mathbb R}^n, \\end{equation*} from ${\\operatorname{G\\Gamma}}(p,m,v)$ into $\\Lambda^q(w)$. Here $\\Lambda^{\\alpha}(b)$ and ${\\operatorname{G\\Gamma}}(p,m,w)$ are the classical and generalized Lorentz spaces, defined as a set of all measurable functions $f$ defined on ${\\mathbb R}^n$ for which $$ \\|f\\|_{\\Lambda^{\\alpha}(b)} = \\bigg( \\int_0^{\\infty} [f^*(s)]^{\\alpha} b(s)\\,ds \\bigg)^{\\frac{1}{\\alpha}}<\\infty \\quad \\mbox{and} \\quad \\|f\\|_{{\\operatorname{G\\Gamma}}(p,m,w)} = \\bigg( \\int_0^{\\infty} \\bigg( \\int_0^x [f^* (\\tau)]^p\\,d\\tau \\bigg)^{\\frac{m}{p}} v(x)\\,dx \\bigg)^{\\frac{1}{m}}<\\infty, $$ respectively. We reduce the problem to the solution of the inequality \\begin{equation*} \\bigg( \\int_0^{\\infty} \\big[ T_{u,b}f^* (x)\\big]^q \\, w(x)\\,dx\\bigg)^{\\frac{1}{q}} \\le C \\, \\bigg( \\int_0^{\\infty} \\bigg( \\int_0^x [f^* (\\tau)]^p\\,d\\tau \\bigg)^{\\frac{m}{p}} v(x)\\,dx \\bigg)^{\\frac{1}{m}} \\end{equation*} where $w$ and $v$ are weight functions on $(0,\\infty)$. Here $f^*$ is the non-increasing rearrangement of $f$ defined on ${\\mathbb R}^n$ and $T_{u,b}$ is the iterated Hardy-type operator involving suprema, which is defined for a measurable non-negative function $f$ on $(0,\\infty)$ by $$ (T_{u,b} g)(t) : = \\sup_{\\tau \\in [t,\\infty)} \\frac{u(\\tau)}{B(\\tau)} \\int_0^{\\tau} g(s)b(s)\\,ds,\\qquad t \\in (0,\\infty), $$ where $u$ and $b$ are appropriate weight functions on $(0,\\infty)$ and the function $B(t) : = \\int_0^t b(s)\\,ds$ satisfies $0","PeriodicalId":54116,"journal":{"name":"Azerbaijan Journal of Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Azerbaijan Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59849/2218-6816.2023.2.51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we calculate the norm of the generalized maximal operator $M_{\phi,\Lambda^{\alpha}(b)}$, defined with $0<\alpha<\infty$ and functions $b,\,\phi: (0,\infty) \rightarrow (0,\infty)$ for all measurable functions $f$ on ${\mathbb R}^n$ by \begin{equation*} M_{\phi,\Lambda^{\alpha}(b)}f(x) : = \sup_{Q \ni x} \frac{\|f \chi_Q\|_{\Lambda^{\alpha}(b)}}{\phi (|Q|)}, \qquad x \in {\mathbb R}^n, \end{equation*} from ${\operatorname{G\Gamma}}(p,m,v)$ into $\Lambda^q(w)$. Here $\Lambda^{\alpha}(b)$ and ${\operatorname{G\Gamma}}(p,m,w)$ are the classical and generalized Lorentz spaces, defined as a set of all measurable functions $f$ defined on ${\mathbb R}^n$ for which $$ \|f\|_{\Lambda^{\alpha}(b)} = \bigg( \int_0^{\infty} [f^*(s)]^{\alpha} b(s)\,ds \bigg)^{\frac{1}{\alpha}}<\infty \quad \mbox{and} \quad \|f\|_{{\operatorname{G\Gamma}}(p,m,w)} = \bigg( \int_0^{\infty} \bigg( \int_0^x [f^* (\tau)]^p\,d\tau \bigg)^{\frac{m}{p}} v(x)\,dx \bigg)^{\frac{1}{m}}<\infty, $$ respectively. We reduce the problem to the solution of the inequality \begin{equation*} \bigg( \int_0^{\infty} \big[ T_{u,b}f^* (x)\big]^q \, w(x)\,dx\bigg)^{\frac{1}{q}} \le C \, \bigg( \int_0^{\infty} \bigg( \int_0^x [f^* (\tau)]^p\,d\tau \bigg)^{\frac{m}{p}} v(x)\,dx \bigg)^{\frac{1}{m}} \end{equation*} where $w$ and $v$ are weight functions on $(0,\infty)$. Here $f^*$ is the non-increasing rearrangement of $f$ defined on ${\mathbb R}^n$ and $T_{u,b}$ is the iterated Hardy-type operator involving suprema, which is defined for a measurable non-negative function $f$ on $(0,\infty)$ by $$ (T_{u,b} g)(t) : = \sup_{\tau \in [t,\infty)} \frac{u(\tau)}{B(\tau)} \int_0^{\tau} g(s)b(s)\,ds,\qquad t \in (0,\infty), $$ where $u$ and $b$ are appropriate weight functions on $(0,\infty)$ and the function $B(t) : = \int_0^t b(s)\,ds$ satisfies $0
广义洛伦兹空间与经典洛伦兹空间之间极大函数的范数
本文计算了广义极大算子$M_{\phi,\Lambda^{\alpha}(b)}$的范数,定义为$0<\alpha<\infty$和函数$b,\,\phi: (0,\infty) \right row (0,\infty)$对于${\mathbb R}^n$上的所有可测函数$f$的范数:\begin{equation*} M_{\phi,\Lambda^{\alpha}(b)}f(x) = \sup_{Q \ni x} \frac{\|} \chi_Q\| {\Lambda^{\alpha}(b)}}{\phi (|Q|)}, \qquad x \ In {\mathbb R}} n, \end{equation*}从${\operatorname{G\Gamma}}(p,m,v)$到$\Lambda^ Q (w)$。这里$\Lambda^{\alpha}(b)$和${\operatorname{G\Gamma}}(p,m,w)$是经典的和广义的洛伦兹空间,定义为一组所有可测函数f定义在美元$ {\ mathbb R} ^ n的美元$ $ f \ \ | | _{\λ^{\α}(b)} = \境(\ int_0 ^ {\ infty} (f ^ * (s)) ^{\α}b (s) \, ds \境)^{\压裂{1}{\α}}< \ infty \四\ mbox{和}\四\ | f \ | _ {{\ operatorname {G \伽马}}(p m w)} = \境(\ int_0 ^ {\ infty} \境(\ int_0 x ^ ^ [f ^ *(\τ)]p \ d \τ\境)^{\压裂{m} {p}} v (x) \, dx \境)^{\压裂{1}{m}} < \ infty分别$ $。我们减少了问题的解决不平等\开始{方程*}\境(\ int_0 ^ {\ infty} \大(T_ {u, b}识别f ^ * (x) \] ^问\ w (x) \, dx \境)^{\压裂{1}{q}} \ le C \ \境(\ int_0 ^ {\ infty} \境(\ int_0 ^ x [f ^ *(\τ)]^ p \ d \τ\境)^{\压裂{m} {p}} v (x) \, dx \境)^{\压裂{1}{m}} \{方程*}结束w美元和v美元权重函数在(0,\ infty)美元。这里$f^*$是定义在${\mathbb R}^n$上的$f$的非递增重排,$T_{u,b}$是迭代hardy型算子,它是定义在$(0,\infty)$上的可测非负函数$f$,由$$ (T_{u,b} g)(t): = \sup_{\tau \in [t,\infty)} \frac{u(\tau)}{b(\tau)}{b(\tau)}}{int_0^{\tau} g(s)b(s)\,ds,\qquad t \in (0,\infty), $$其中$u$和$b$是$(0,\infty)$上的适当权函数,函数$b (t): = \int_0^t b(s)\,ds$满足$0
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
12.50%
发文量
1
期刊介绍: The aim of Azerbaijan Journal of Mathematics is to disseminate new and innovative research ideas and developments in the fields of Mathematics. Original research papers and survey articls covering all fields of mathematics are published in the journal, but special attention is paid to: mathematical analysis, ordinary differential equations, partial differential equations, mathematical physics, functional analysis, probability theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信