{"title":"Norms of Maximal Functions between Generalized and Classical Lorentz Spaces","authors":"R. Mustafayev, Nevin Bilgiccli, M. Yılmaz","doi":"10.59849/2218-6816.2023.2.51","DOIUrl":null,"url":null,"abstract":"In this paper we calculate the norm of the generalized maximal operator $M_{\\phi,\\Lambda^{\\alpha}(b)}$, defined with $0<\\alpha<\\infty$ and functions $b,\\,\\phi: (0,\\infty) \\rightarrow (0,\\infty)$ for all measurable functions $f$ on ${\\mathbb R}^n$ by \\begin{equation*} M_{\\phi,\\Lambda^{\\alpha}(b)}f(x) : = \\sup_{Q \\ni x} \\frac{\\|f \\chi_Q\\|_{\\Lambda^{\\alpha}(b)}}{\\phi (|Q|)}, \\qquad x \\in {\\mathbb R}^n, \\end{equation*} from ${\\operatorname{G\\Gamma}}(p,m,v)$ into $\\Lambda^q(w)$. Here $\\Lambda^{\\alpha}(b)$ and ${\\operatorname{G\\Gamma}}(p,m,w)$ are the classical and generalized Lorentz spaces, defined as a set of all measurable functions $f$ defined on ${\\mathbb R}^n$ for which $$ \\|f\\|_{\\Lambda^{\\alpha}(b)} = \\bigg( \\int_0^{\\infty} [f^*(s)]^{\\alpha} b(s)\\,ds \\bigg)^{\\frac{1}{\\alpha}}<\\infty \\quad \\mbox{and} \\quad \\|f\\|_{{\\operatorname{G\\Gamma}}(p,m,w)} = \\bigg( \\int_0^{\\infty} \\bigg( \\int_0^x [f^* (\\tau)]^p\\,d\\tau \\bigg)^{\\frac{m}{p}} v(x)\\,dx \\bigg)^{\\frac{1}{m}}<\\infty, $$ respectively. We reduce the problem to the solution of the inequality \\begin{equation*} \\bigg( \\int_0^{\\infty} \\big[ T_{u,b}f^* (x)\\big]^q \\, w(x)\\,dx\\bigg)^{\\frac{1}{q}} \\le C \\, \\bigg( \\int_0^{\\infty} \\bigg( \\int_0^x [f^* (\\tau)]^p\\,d\\tau \\bigg)^{\\frac{m}{p}} v(x)\\,dx \\bigg)^{\\frac{1}{m}} \\end{equation*} where $w$ and $v$ are weight functions on $(0,\\infty)$. Here $f^*$ is the non-increasing rearrangement of $f$ defined on ${\\mathbb R}^n$ and $T_{u,b}$ is the iterated Hardy-type operator involving suprema, which is defined for a measurable non-negative function $f$ on $(0,\\infty)$ by $$ (T_{u,b} g)(t) : = \\sup_{\\tau \\in [t,\\infty)} \\frac{u(\\tau)}{B(\\tau)} \\int_0^{\\tau} g(s)b(s)\\,ds,\\qquad t \\in (0,\\infty), $$ where $u$ and $b$ are appropriate weight functions on $(0,\\infty)$ and the function $B(t) : = \\int_0^t b(s)\\,ds$ satisfies $0","PeriodicalId":54116,"journal":{"name":"Azerbaijan Journal of Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Azerbaijan Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59849/2218-6816.2023.2.51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper we calculate the norm of the generalized maximal operator $M_{\phi,\Lambda^{\alpha}(b)}$, defined with $0<\alpha<\infty$ and functions $b,\,\phi: (0,\infty) \rightarrow (0,\infty)$ for all measurable functions $f$ on ${\mathbb R}^n$ by \begin{equation*} M_{\phi,\Lambda^{\alpha}(b)}f(x) : = \sup_{Q \ni x} \frac{\|f \chi_Q\|_{\Lambda^{\alpha}(b)}}{\phi (|Q|)}, \qquad x \in {\mathbb R}^n, \end{equation*} from ${\operatorname{G\Gamma}}(p,m,v)$ into $\Lambda^q(w)$. Here $\Lambda^{\alpha}(b)$ and ${\operatorname{G\Gamma}}(p,m,w)$ are the classical and generalized Lorentz spaces, defined as a set of all measurable functions $f$ defined on ${\mathbb R}^n$ for which $$ \|f\|_{\Lambda^{\alpha}(b)} = \bigg( \int_0^{\infty} [f^*(s)]^{\alpha} b(s)\,ds \bigg)^{\frac{1}{\alpha}}<\infty \quad \mbox{and} \quad \|f\|_{{\operatorname{G\Gamma}}(p,m,w)} = \bigg( \int_0^{\infty} \bigg( \int_0^x [f^* (\tau)]^p\,d\tau \bigg)^{\frac{m}{p}} v(x)\,dx \bigg)^{\frac{1}{m}}<\infty, $$ respectively. We reduce the problem to the solution of the inequality \begin{equation*} \bigg( \int_0^{\infty} \big[ T_{u,b}f^* (x)\big]^q \, w(x)\,dx\bigg)^{\frac{1}{q}} \le C \, \bigg( \int_0^{\infty} \bigg( \int_0^x [f^* (\tau)]^p\,d\tau \bigg)^{\frac{m}{p}} v(x)\,dx \bigg)^{\frac{1}{m}} \end{equation*} where $w$ and $v$ are weight functions on $(0,\infty)$. Here $f^*$ is the non-increasing rearrangement of $f$ defined on ${\mathbb R}^n$ and $T_{u,b}$ is the iterated Hardy-type operator involving suprema, which is defined for a measurable non-negative function $f$ on $(0,\infty)$ by $$ (T_{u,b} g)(t) : = \sup_{\tau \in [t,\infty)} \frac{u(\tau)}{B(\tau)} \int_0^{\tau} g(s)b(s)\,ds,\qquad t \in (0,\infty), $$ where $u$ and $b$ are appropriate weight functions on $(0,\infty)$ and the function $B(t) : = \int_0^t b(s)\,ds$ satisfies $0
期刊介绍:
The aim of Azerbaijan Journal of Mathematics is to disseminate new and innovative research ideas and developments in the fields of Mathematics. Original research papers and survey articls covering all fields of mathematics are published in the journal, but special attention is paid to: mathematical analysis, ordinary differential equations, partial differential equations, mathematical physics, functional analysis, probability theory.