{"title":"Preliminary study in the analysis of the severity of cardiac pathologies using the higher-order spectra on the heart-beats signals","authors":"Sid Ahmed Berraih, Y. N. Baakek, S. Debbal","doi":"10.2478/pjmpe-2021-0010","DOIUrl":"https://doi.org/10.2478/pjmpe-2021-0010","url":null,"abstract":"Abstract Phonocardiography is a technique for recording and interpreting the mechanical activity of the heart. The recordings generated by such a technique are called phonocardiograms (PCG). The PCG signals are acoustic waves revealing a wealth of clinical information about cardiac health. They enable doctors to better understand heart sounds when presented visually. Hence, multiple approaches have been proposed to analyze heart sounds based on PCG recordings. Due to the complexity and the high nonlinear nature of these signals, a computer-aided technique based on higher-order statistics (HOS) is employed, it is known to be an important tool since it takes into account the non-linearity of the PCG signals. This method also known as the bispectrum technique, can provide significant information to enhance the diagnosis for an accurate and objective interpretation of heart condition. The objective expected by this paper is to test in a preliminary way the parameters which can make it possible to establish a discrimination between the various signals of different pathologies and to characterize the cardiac abnormalities. This preliminary study will be done on a reduced sample (nine signals) before applying it subsequently to a larger sample. This work examines the effectiveness of using the bispectrum technique in the analysis of the pathological severity of different PCG signals. The presented approach showed that HOS technique has a good potential for pathological discrimination of various PCG signals.","PeriodicalId":53955,"journal":{"name":"Polish Journal of Medical Physics and Engineering","volume":"60 1","pages":"73 - 85"},"PeriodicalIF":0.4,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80270687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amit Kumar Srivastava, A. Bharati, M. Rastogi, S. Mishra, R. Khurana, R. Hadi, A. Gandhi, Lalatendu Mishra
{"title":"Evaluation of dosimetric implications of Pareto and constrained mode of optimization for Monaco TPS generated VMAT plans in post operated carcinoma of the left breast","authors":"Amit Kumar Srivastava, A. Bharati, M. Rastogi, S. Mishra, R. Khurana, R. Hadi, A. Gandhi, Lalatendu Mishra","doi":"10.2478/pjmpe-2021-0002","DOIUrl":"https://doi.org/10.2478/pjmpe-2021-0002","url":null,"abstract":"Abstract Intensity-modulated radiotherapy (IMRT) is being practiced for the last several years with a special approach for radiation therapy in post-mastectomy breast cancer patients. Meeting the cardiac dose constraints has always been a challenge during radiotherapy planning by both IMRT and VMAT (volumetric modulated arc therapy) of post-mastectomy left breast patients. With the advancement in IMRT planning techniques, it has been modified to VMAT with more degrees of freedom for modulation and is being utilised more frequently. This helps in obtaining a suitable plan for achieving both the dose homogeneity in target volume and dose constraints to Organ at Risk (OAR). 10 Patients with carcinoma of the left breast (post-mastectomy) were selected for this study. VMAT treatment plans for these patients were generated for 6 MV photons on the Monaco treatment planning system (TPS) using two types of optimization modes i.e. Pareto and Constrained mode available in Monaco TPS. For comparative dosimetric evaluation of the efficacy of these two types of optimization modes similar calculation algorithms, calculation grids, arcs, and beam sequencing parameters were used for generating treatment plans. The dosimetric quantities such as volume receiving more than 95% of the prescribed dose (V95), volume receiving more than 107% of the prescribed dose (V107) and Maximum dose (Dmax) for target volume, mean dose (Dmean) for heart, volume receiving more than 30 Gy (V30) volume receiving more than 20 Gy (V20) volume receiving more than 5 Gy (V5) for ipsilateral lung and total monitor units delivered were analysed for both optimization modes. A judicious mix of multiple planning parameters and variables using these two modes of optimization was applied and recorded. Both optimization modes yielded similar outcomes. However, Pareto mode has shown better coverage for planning target volume (PTV) with comparable doses to OARs.","PeriodicalId":53955,"journal":{"name":"Polish Journal of Medical Physics and Engineering","volume":"11 1","pages":"11 - 18"},"PeriodicalIF":0.4,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79393790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Ibitoye, Obande C Ogese, M. B. Adedokun, M. Habeebu, E. Nwoye, A. Aweda
{"title":"Evaluation of the performance of designed coaxial antennas for hyperthermia using simulation and experimental methods","authors":"A. Ibitoye, Obande C Ogese, M. B. Adedokun, M. Habeebu, E. Nwoye, A. Aweda","doi":"10.2478/pjmpe-2021-0013","DOIUrl":"https://doi.org/10.2478/pjmpe-2021-0013","url":null,"abstract":"Abstract Introduction: Antenna geometries and tissue properties affect microwave energy distributions during microwave ablation procedures. There is paucity information on the potential of antenna fabricated from a thick semi-rigid coaxial cable in the field of microwave thermal therapy. This study aimed at comparing the performance of two dual-slot antennas designed from different semi-rigid coaxial cables for the ablation of a liver tumour using numerical simulation and experimental validation methods. Materials and Methods: COMSOL Multiphysics software was used for designing dual-slot antennas and as well as to evaluate microwave energy deposition and heat distribution in the liver tissue. Experimental validations were conducted on the ex-vivo bovine livers to validate the simulation results. Results: Thick antenna developed in this study produced a higher sphericity index, larger ablation diameter and reduced backward heating along the antenna shaft than the existing one. The experimental validation results also indicate significant differences between the two antennas in terms of ablation diameters (p = 0.04), ablation lengths (p = 0.02) and aspect ratios (p = 0.02). Conclusion: Based on the findings in this study, antenna fabricated from a thick coaxial cable has a higher potential of localizing microwave energy in the liver than conventional antennas.","PeriodicalId":53955,"journal":{"name":"Polish Journal of Medical Physics and Engineering","volume":"12 1","pages":"109 - 117"},"PeriodicalIF":0.4,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87471403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. Fabiszewska, A. Wysocka-Rabin, M. Dobrzyńska, W. Skrzyński, K. Pasicz
{"title":"Application of DQE for quantitative assessment of detectors to estimate AEC efficiency in digital mammography","authors":"E. Fabiszewska, A. Wysocka-Rabin, M. Dobrzyńska, W. Skrzyński, K. Pasicz","doi":"10.2478/pjmpe-2021-0007","DOIUrl":"https://doi.org/10.2478/pjmpe-2021-0007","url":null,"abstract":"Abstract Optimisation of the detector’s exposure parameters settings for image quality and patient dose is an important task in digital mammography. Assessment of a digital detector’s performance can be done objectively and without operator bias by determining the Detective Quantum Efficiency (DQE). The authors of this article aim to prove that the performance of the AEC system can be objectively portrayed through DQE. The results were examined for influence of KAD changes on DQE values and to determine if it was possible to obtain similar DQE values for different exposures. While analysing the effect of the operation of the AEC system described with DQE, the doses received by women during mammography examinations were considered, as well. The AEC system’s exposure control mechanism cannot guarantee the same DQE value for different object thicknesses. When the object thickness increases, the AEC system should increase the KAD value to obtain the same DQE value. The result of increasing KAD would be the increase of mean glandular dose for some women. However, assuming that DQE is a good indicator of image quality, introducing the proposed changes to the AEC system’s operation would result in the same image quality for all breast thicknesses. This approach to DQE use for AEC system evaluation is independent of the image processing procedure and can be the basis for changes to system calibration done by the manufacturer’s technical support team.","PeriodicalId":53955,"journal":{"name":"Polish Journal of Medical Physics and Engineering","volume":"7 1","pages":"51 - 56"},"PeriodicalIF":0.4,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83109269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
L. Kastrati, G. Hodolli, S. Kadiri, Elvin Demirel, Lutfi Istrefi, Y. Kabashi, B. Uka
{"title":"Applications and benefits of using gradient percentage depth dose instead of percentage depth dose for electron and photon beams in radiotherapy","authors":"L. Kastrati, G. Hodolli, S. Kadiri, Elvin Demirel, Lutfi Istrefi, Y. Kabashi, B. Uka","doi":"10.2478/pjmpe-2021-0004","DOIUrl":"https://doi.org/10.2478/pjmpe-2021-0004","url":null,"abstract":"Abstract Introduction: The aim of this study is to analyze the gradient of percentage depth dose for photon and electron beams of LINACs and to simplify the data set. Materials and Methods: Dosimetry measurements were performed in accordance with Technical Reports Series No. 398 IAEA. Results and discussion: The gradient of percentage depth dose was calculated and compared with the available published data. Conclusion: Instead of percentage depth dose for increasing and decreasing parts, the findings suggest using only two numbers for specific gradient of dose, separately. In this way, they can replace the whole set of the percentage depth dose (PDD).","PeriodicalId":53955,"journal":{"name":"Polish Journal of Medical Physics and Engineering","volume":"31 1","pages":"25 - 29"},"PeriodicalIF":0.4,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85091449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Buliński, T. Kuszewski, K. Wnuk, J. Braziewicz, K. Slosarek
{"title":"Uncertainties in the measurement of relative doses in radiotherapy","authors":"K. Buliński, T. Kuszewski, K. Wnuk, J. Braziewicz, K. Slosarek","doi":"10.2478/pjmpe-2021-0001","DOIUrl":"https://doi.org/10.2478/pjmpe-2021-0001","url":null,"abstract":"Abstract Both the measurement of the dose and the measurement of its distribution, like any other measurements, are subject to measurement uncertainties. These uncertainties affect all dose calculations and dose distributions in a patient’s body during treatment planning in radiotherapy. Measurement uncertainty is not a medical physicist’s error, but an inevitable element of their work. Planning the dose distribution in a patient’s body, we often try to reduce it in the volume of critical organs (OaR - Organ at Risk) or increase the minimum dose in the PTV region by a few percent. It is believed that the measurement uncertainty should be taken into account in these calculations at the stage of treatment planning. The paper presents the method of calculating the measurement uncertainty for different physical quantities in radiotherapy as percentage depth dose, profile function and output factor, due to the fact that these quantities have a particular impact on the calculated dose distributions in a patient’s body. The uncertainties that must be taken into account in planning treatment the planned dose per fraction and real in PTV, maybe different up to 4%.","PeriodicalId":53955,"journal":{"name":"Polish Journal of Medical Physics and Engineering","volume":"1 1","pages":"1 - 9"},"PeriodicalIF":0.4,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90994793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. A. Dubois, Nguyen Thi Phuong Thao, Nguyễn Thiện Trung, J. Azcona, P. Aguilar-Redondo
{"title":"A tool for precise calculation of organ doses in voxelised geometries using GAMOS/Geant4 with a graphical user interface","authors":"P. A. Dubois, Nguyen Thi Phuong Thao, Nguyễn Thiện Trung, J. Azcona, P. Aguilar-Redondo","doi":"10.2478/pjmpe-2021-0005","DOIUrl":"https://doi.org/10.2478/pjmpe-2021-0005","url":null,"abstract":"Abstract Introduction: The limit of the method of calculating organ doses using voxelised phantoms with a Monte Carlo simulation code is that dose calculation errors in the boundaries of the organs are especially relevant for thin, small or complex geometries. In this report, we describe a tool that helps overcome this problem, accurately calculating organ doses by applying the “parallel geometry” utility feature of Geant4 through the GAMOS framework. Methods and methods: We have tried to simplify the use of this tool by automatically processing the different DICOM image modalities (CT, PT, ST, NM), and by including the automatic conversion of the structures found in a DICOM RTSTRUCT file into Geant4 volumes that build the parallel geometry. For Nuclear Medicine applications, the DICOM PT, ST or NM images are converted into probabilities of generation of primary particles in each voxel, and the DICOM CT images into materials and material densities. For radiotherapy treatments, the DICOM RTPlan or RTIonPlan may also be used, hence the user only needs to describe the accelerator geometry. We also provide a Graphical User Interface for ease of use by for inexperienced users in Monte Carlo. Results: We have tested the functionality of the tool with an I-131 thyroid cancer treatment, and obtained the expected energy deposition and dose differences, given that the particle source, geometry and structures are defined. Conclusions: In summary, we provide an easy-to-use tool to calculate, with high accuracy, organ doses, taking into account their exact geometry as painted by the medical personnel on a voxelised phantom.","PeriodicalId":53955,"journal":{"name":"Polish Journal of Medical Physics and Engineering","volume":"86 1","pages":"31 - 40"},"PeriodicalIF":0.4,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80883706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evaluation of glandular dose in mammography in presence of breast cysts using Monte Carlo simulation","authors":"M. Deevband, Z. Kaveh, M. Ghorbani, B. Khajetash","doi":"10.2478/pjmpe-2021-0006","DOIUrl":"https://doi.org/10.2478/pjmpe-2021-0006","url":null,"abstract":"Abstract Background: Normalized glandular dose (DgN) is an important dosimetric quantity in mammography. Aim: In this study, the effect of the presence of breast cysts and their size, number and location on DgN is evaluated. Materials and methods: The effect of the presence of cysts in breast was examined using MCNPX code. This was performed by taking homogeneous breast phantoms containing spheroid breast cysts into account. The radius of the cysts, numbers of the cysts, and depth of the cysts, and their location were variable. Various electron energies were also considered. Finally, these results were compared with the results of a cyst-less breast phantom. Results: The results show that the effect of the presence of cysts in the breast depends on the size, number and location of cysts. The presence of cysts at lower depths leads to a decrease in the DgN values, compared to the breast phantom without cysts. The presence of cysts in the breast phantom has an effect of -7 to +14 percent on the DgN values under the conditions considered in this modeling. This effect is independent of the X-ray tube voltage, the breast phantom thickness, and glandular ratio, and depends only on the number and size and location of the cysts. The bigger radius and number of cysts, the greater effect on DgN value.","PeriodicalId":53955,"journal":{"name":"Polish Journal of Medical Physics and Engineering","volume":"27 1","pages":"41 - 50"},"PeriodicalIF":0.4,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87672974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optical investigation of bovine grey and white matters in visible and near-infrared ranges","authors":"Ali Shahin, W. Bachir, M. S. El-daher","doi":"10.2478/pjmpe-2021-0012","DOIUrl":"https://doi.org/10.2478/pjmpe-2021-0012","url":null,"abstract":"Abstract Introduction: Due to enormous interests for laser in medicine and biology, optical properties characterization of different tissue have be affecting in development processes. In addition, the optical properties of biological tissues could be influenced by storage methods. Thus, optical properties of bovine white and grey tissues preserved by formalin have been characterized over a wide wavelength spectrum varied between 440 nm and 1000 nm. Materials and Methods: To that end, a single integrating sphere system was assembled for spectroscopic characterization and an inverse adding-doubling algorithm was used to retrieve optical coefficients, i.e. reduced scattering and absorption coefficients. Results: White matter has shown a strong scattering property in comparison to grey matter. On the other hand, the grey matter has absorbed light extensively. In comparison, the reduced scattering profile for both tissue types turned out to be consistent with prior works that characterized optical coefficients in vivo. On the contrary, absorption coefficient behavior has a different feature. Conclusion: Formalin could change the tissue’s optical properties because of the alteration of tissue’s structure and components. The absence of hemoglobin that seeps out due to the use of a formalin could reduce the absorption coefficient over the visible range. Both the water replacement by formalin could reduce the refractive index of a stored tissue and the absence of hemoglobin that scatters light over the presented wavelength range should diminish the reduced scattering coefficients over that wavelength range.","PeriodicalId":53955,"journal":{"name":"Polish Journal of Medical Physics and Engineering","volume":"5 1","pages":"99 - 107"},"PeriodicalIF":0.4,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80359652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of detection system parameters on cross-correlations between MUAPs generated from parallel and inclined muscle fibres","authors":"N. Messaoudi, R. Bekka, S. Belkacem","doi":"10.2478/pjmpe-2021-0011","DOIUrl":"https://doi.org/10.2478/pjmpe-2021-0011","url":null,"abstract":"Abstract The aim of this study was to investigate the effects of inter-electrode distance (IED), electrode radius (ER) and electrodes configurations on cross-correlation coefficient (CC) between motor unit action potentials (MUAPs) generated in a motor unit (MU) of parallel fibres and in a MU of inclined fibres with respect to the detection system. The fibres inclination angle (FIA) varied from 0° to 180° by a step of 5°. Six spatial filters (the longitudinal single differential (LSD), longitudinal double differential (LDD), bi-transversal double differential (BiTDD), normal double differential (NDD), an inverse binomial filter of order two (IB2) and maximum kurtosis filter (MKF)), three values of IED and three values of ER were considered. A cylindrical multilayer volume conductor constituted by bone, muscle, fat and skin layers was used to simulate the MUAPs. The cross-correlation coefficient analysis showed that with the increase of the FIA, the pairs of MUAPs detected by the IB2 system were more correlated than those detected by the five other systems. For each FIA, the findings also showed that the MUAPs pairs detected by BiTDD, NDD, IB2 and MKF systems were more correlated with smaller IEDs than with larger ones, while inverse results were found with the LSD and LDD systems. In addition, the pairs of MUAPs detected by the LDD, BiTDD, IB2 and MKF systems were more correlated with large ERs than with smaller ones. However, inverse results were found with the LSD and NDD systems.","PeriodicalId":53955,"journal":{"name":"Polish Journal of Medical Physics and Engineering","volume":"3 1","pages":"87 - 97"},"PeriodicalIF":0.4,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75615470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}