{"title":"Penerapan Analisis Diskriminan untuk Klasifikasi Pengaruh Data Warisan Budaya Takbenda terhadap Banyaknya Wisatawan Domestik","authors":"Nadira Annisafiya, Dianne Amor Kusuma, Budi Nurani Ruchjana","doi":"10.24198/jmi.v19.n2.46791.149-161","DOIUrl":"https://doi.org/10.24198/jmi.v19.n2.46791.149-161","url":null,"abstract":"","PeriodicalId":53096,"journal":{"name":"Jurnal Matematika Integratif","volume":"162 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139145775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pemodelan Pertumbuhan Penduduk Kota Kupang dengan Geogebra","authors":"A. Fernandez, A. H. Kaluge, Meryani Lakapu","doi":"10.24198/jmi.v19.n2.50288.235-243","DOIUrl":"https://doi.org/10.24198/jmi.v19.n2.50288.235-243","url":null,"abstract":"This research aims to project the population of Kupang City in 2030. Data on the population of Kupang City was obtained from Badan Pusat Statistik of Kupang City. The data was used in 12 year time intervals. The process of projecting the population of Kupang City was carried out with the help of Geogebra Software. The projection of the population of Kupang City is modeled using a Linear Model, Exponential Model, Geometry Model and Logarithmic Model. The logarithmic model has the smallest error so it can be said that the logarithmic model is better than other models, in relation to projecting the population of Kupang City. The results obtained for the population of Kupang City in 2030, respectively for the Geometry Model, Logarithmic Model, Exponential Model and Linear Model are 519106.81, 535169.03, 557736.47, 535564.58. These results can be the basis for the government or parties regarding future policies.","PeriodicalId":53096,"journal":{"name":"Jurnal Matematika Integratif","volume":"28 22","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139147516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Perbandingan Estimasi Premi Asuransi Jiwa Joint Life dengan Menggunakan Asumsi Kebebasan Mortalita dan Metode Copula Archimedean","authors":"Fuji Lestari, Azizah Dzakiya","doi":"10.24198/jmi.v19.n2.49447.201-212","DOIUrl":"https://doi.org/10.24198/jmi.v19.n2.49447.201-212","url":null,"abstract":"Risiko merupakan kejadian yang tidak dapat dihindari. Salah satu cara untuk menghindari risiko tersebut adalah dengan mengikuti asuransi. Asuransi pada umumnya mempunyai jenis yang berbeda-beda, salah satunya adalah asuransi jiwa. Asuransi jiwa adalah asuransi yang berhubungan dengan risiko kematian. Asuransi jiwa yang melindungi lebih dari satu orang disebut asuransi jiwa joint life. Pemegang polis dari asuransi tersebut umumnya adalah pasangan suami dan istri. Penelitian ini membandingkan estimasi premi asuransi jiwa joint life dengan menggunakan asumsi kebebasan mortalita dan metode copula Archimedean. Data penelitian ini menggunakan data Tabel Mortalitas BPJS tahun 2022 dengan berbagai asumsi. Perbandingan premi yang diperoleh menggunakan asumsi risiko kematian tidak saling bebas menggunakan metode copula clayton lebih rendah dibandingkan dengan menggunakan asumsi kebebasan mortalita, copula Frank, dan copula Gumbel. Selain itu, perbedaan umur antara suami dan istri juga mempengaruhi besarnya nilai premi. Semakin besar perbedaan umur dari suami dan istri, maka semakin besar pula nilai premi yang dibayarkan pertahun.","PeriodicalId":53096,"journal":{"name":"Jurnal Matematika Integratif","volume":" 16","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139145186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
B. D. A. Prayanti, Maxrizal Maxrizal, Fahri Setiawan
{"title":"Modification of the Leslie Model on Population Growth in the Bangka Belitung Islands Province","authors":"B. D. A. Prayanti, Maxrizal Maxrizal, Fahri Setiawan","doi":"10.24198/jmi.v19.n2.48425.163-172","DOIUrl":"https://doi.org/10.24198/jmi.v19.n2.48425.163-172","url":null,"abstract":"The Leslie model is one of the applications of Algebra in solving a population growth model. The birth rate and survival rate of a population are constituents of the Leslie Matrix. The advantage of this model is that it only requires data on the total female population. This study aims to modify the classic Leslie Model by adding correction values to matrix elements, especially birth rates and survival rates. The correction value is obtained from the minimum Euclidean distance for each birth rate and survival rate for each population age group. The Euclidean distance is used because it requires simple calculations. Based on the modified results, the Perron value obtained from the Leslie matrix is 0.9. If the constant value is zero, then the modification of the Leslie model will be the same as the classic Leslie model.","PeriodicalId":53096,"journal":{"name":"Jurnal Matematika Integratif","volume":"5 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139147432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Masalah Antar-Jemput Barang Menggunakan Armada Kendaraan Listrik dengan Kapasitas Angkut dan Kapasitas Baterai Berbeda","authors":"Rahma Nurlailawati, Toni Bakhtiar, P. T. Supriyo","doi":"10.24198/jmi.v19.n2.48627.173-182","DOIUrl":"https://doi.org/10.24198/jmi.v19.n2.48627.173-182","url":null,"abstract":"Urgensi Electric Vehicle Routing Problems (EVRP) terletak pada kebutuhan untuk mengoptimalkan rute kendaraan listrik guna mengurangi emisi karbon dan dampak lingkungan. Tantangan EVRP meliputi kompleksitas perhitungan rute dengan mempertimbangkan batasan daya baterai dan infrastruktur pengisian daya yang terbatas. Di artikel ini diformulasikan masalah perutean kendaraan listrik dengan permintaan antar-jemput barang dalam bentuk pemrograman linear bilangan bulat. Model yang diajukan memiliki fitur penggunaan armada kendaraan dengan kapasitas angkut dan kapasitas baterai heterogen. Implementasi model meliputi penyelesaian masalah antar-jemput barang menggunakan armada kendaraan listrik homogen dan heterogen dengan depot, pelanggan, kendaraan listrik, dan stasiun pengisian kendaraan listrik umum. Metode eksak digunakan dalam pencarian solusi optimum dengan bantuan Lingo 17.0.","PeriodicalId":53096,"journal":{"name":"Jurnal Matematika Integratif","volume":" 14","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139142615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Penerapan Model Spatial Autoregressive Exogenous pada Data Penetapan Warisan Budaya Takbenda di Pulau Jawa","authors":"Almeira Tsanawafa, Dianne Amor Kusuma, Budi Nurani Ruchjana","doi":"10.24198/jmi.v19.n2.46526.137-147","DOIUrl":"https://doi.org/10.24198/jmi.v19.n2.46526.137-147","url":null,"abstract":"","PeriodicalId":53096,"journal":{"name":"Jurnal Matematika Integratif","volume":" 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139143791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analisis Perbandingan Hasil Peramalan Harga Saham Menggunakan Model Autoregresive Integrated Moving Average dan Long Short Term Memory","authors":"Luki Setiawan, Dwi Susanti, Riaman Riaman","doi":"10.24198/jmi.v19.n2.42164.223-234","DOIUrl":"https://doi.org/10.24198/jmi.v19.n2.42164.223-234","url":null,"abstract":"","PeriodicalId":53096,"journal":{"name":"Jurnal Matematika Integratif","volume":" 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139142827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ade Novia Rahma, Rahel Edrian, Rahmawati Rahmawati, C. C. Marzuki
{"title":"Invers Matrik RSLPFL_circfr Bentuk Khusus (b, 0, …, 0, b) Berordo n×n Dengan n≥3 Menggunakan Matrik Blok 2×2","authors":"Ade Novia Rahma, Rahel Edrian, Rahmawati Rahmawati, C. C. Marzuki","doi":"10.24198/jmi.v19.n2.49600.245-257","DOIUrl":"https://doi.org/10.24198/jmi.v19.n2.49600.245-257","url":null,"abstract":"Penelitian ini bertujuan untuk menentukan invers dari matriks RSLPFLcircfr bentuk khusus (b,0, …, 0,b) berordo n×n dengan n≥3 menggunakan matriks blok 2×2. Dalam menentukan invers matriks RSLPFLcircfr berbentuk khusus, terdapat tiga langkah yang dikerjakan. Pertama memblok atau mempartisi matriks RSLPFLcircfr dari ordo 3×3 sampai 8×8 dengan dua alternative cara blok. Kedua, menentukan invers submatriks yang invertible dengan menerapkan komplemen Schur lalu menentukan invers matriks RSLPFLcircfr dengan menerapkan kembali komplemen Schur. Ketiga, menentukan bentuk umum invers submatriks yang invertible dan bentuk umum matriks RSLPFLcircfr dan membuktikan dengan aturan invers lalu menerapkan pada contoh soal sesuai dengan Teorema.","PeriodicalId":53096,"journal":{"name":"Jurnal Matematika Integratif","volume":"9 3‐4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139147044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Valeska Isma Firosi, Herlina Napitupulu, Asep K. Supriatna
{"title":"Metode Transformasi Diferensial untuk Menentukan Solusi Persamaan Diferensial Linier Nonhomogen","authors":"Valeska Isma Firosi, Herlina Napitupulu, Asep K. Supriatna","doi":"10.24198/jmi.v19.n2.48876.183-200","DOIUrl":"https://doi.org/10.24198/jmi.v19.n2.48876.183-200","url":null,"abstract":"Persamaan diferensial merupakan salah satu topik dalam matematika yang banyak digunakan dalam memodelkan masalah kehidupan nyata. Misalkan pemodelan penyakit, perkembangan bakteri, pemodelan gelombang, persamaan panas dan lain sebagainya. Secara umum, ada dua jenis persamaan diferensial, yaitu Persamaan Diferensial Biasa (PDB) dan Persamaan Diferensial Parsial (PDP). Pada praktiknya, penyelesaian PDB maupun PDP secara analitik memiliki tantangan tersendiri, sehingga solusi dengan metode numerik semi-analitik merupakan alternatif yang sampai saat ini menarik untuk dikaji.Metode Transformasi Diferensial (MTD) adalah salah satu metode numerik semi-analitik yang dapat digunakan untuk menyelesaikan persamaan diferensial. Metode ini didasarkan pada perluasan deret Taylor, dimana persamaan diferensial diubah menjadi relasi rekurensi untuk mendapatkan solusi deret dalam bentuk polinomial. Pada penelitian ini metode transformasi diferensial digunakan untuk penyelesaian PDB linier nonhomogen dan PDP linier nonhomogen. Pertama, digunakan MTD untuk menyelesaikan masalah nilai awal serta masalah nilai batas untuk PDB linier nonhomogen. Selanjutnya, digunakan MTD Dua Dimensi untuk menyelesaikan masalah nilai awal dan batas untuk PDP linier nonhomogen. Hasil yang diperoleh dengan MTD dibandingkan dengan solusi analitik dari PDB yang diubah ke bentuk deret Taylor. Demikian pula, hasil yang diperoleh MTD Dua Dimensi dibandingkan dengan solusi analitik PDB yang diubah ke bentuk deret Taylor. Selain itu, perbandingan solusi analitik dan solusi MTD juga disajikan dalam grafik dengan bantuan software Maple. Terlihat bahwa solusi numerik semi-analitik dari PDB dan PDP ini mendekati solusi analitik, terlebih ketika banyaknya iterasi ditingkatkan pada MTD.","PeriodicalId":53096,"journal":{"name":"Jurnal Matematika Integratif","volume":" 24","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139142070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Penyelesaian Masalah Nilai Awal PDB Linier Orde Tiga Dengan Koefisien Konstan Menggunakan Metode Dekomposisi Adomian","authors":"Fathudin Fathudin, Aang Nuryaman, A. Faisol","doi":"10.24198/jmi.v19.n2.41896.213-222","DOIUrl":"https://doi.org/10.24198/jmi.v19.n2.41896.213-222","url":null,"abstract":"Metode Dekomposisi Adomian (MDA) telah banyak digunakan dalam menyelesaikan model matematika dalam bentuk persamaan diferensial, baik Persamaan Diferensial Biasa (PDB) maupun Persamaan Diferensial Parsial (PDP). Metode ini dibagi menjadi tiga langkah inti. Langkah pertama adalah menguraikan bagian F dari persamaan operator Fy(x)=g(x) menjadi L dan R, di mana L adalah operator linier yang memiliki invers dan R adalah operator linier lainnya. Langkah kedua adalah mengoperasikan invers dari operator L pada persamaan ini untuk mendapatkan y(x) dan langkah ketiga mengasumsikan solusi yang diperoleh pada langkah kedua berbentuk deret yang memberikan relasi rekursif dan kemudian menyelesaikannya. Penelitian ini akan menerapkan Metode Dekomposisi Adomian pada masalah nilai awal persamaan diferensial biasa linier orde ketiga dengan koefisien konstan baik homogen maupun tak homogen. Berdasarkan perbandingan solusi eksak dengan solusi menggunakan Metode Dekomposisi Adomian hingga suku keempat, hasilnya menunjukkan bahwa solusi hampiran sesuai dengan solusi eksak.","PeriodicalId":53096,"journal":{"name":"Jurnal Matematika Integratif","volume":" 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139142900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}