One Earth最新文献

筛选
英文 中文
Beyond the bay: Biophysical simulations of disease dispersal suggest broadening spatial scales for aquaculture carrying capacity 海湾之外:疾病传播的生物物理模拟表明水产养殖承载能力的空间尺度在扩大
IF 16.2 1区 环境科学与生态学
One Earth Pub Date : 2024-07-19 DOI: 10.1016/j.oneear.2024.05.023
{"title":"Beyond the bay: Biophysical simulations of disease dispersal suggest broadening spatial scales for aquaculture carrying capacity","authors":"","doi":"10.1016/j.oneear.2024.05.023","DOIUrl":"https://doi.org/10.1016/j.oneear.2024.05.023","url":null,"abstract":"<p>One major societal challenge is meeting the constantly increasing demand for (sea)food in a sustainable way. Marine aquaculture offers large production potential, but it is crucial to define production limits that maintain ocean health. The concept of aquaculture carrying capacity (CC) provides such limits for locally defined areas. However, the ocean is subject to large- and small-scale dynamics, and far-reaching effects of aquaculture (e.g., the spread of marine diseases with ocean currents) are currently neglected in CC estimates. Here we predict potential “impact areas” with a biophysical simulation approach and find them to be larger than those currently considered in CC estimates. We suggest “impact areas” as a measure for spatial connectivity with the requirement to define what is an acceptable “impact area” case specifically. The proposed approach is applicable to various marine aquaculture systems and would drive CC estimates toward improved sustainability by considering the impact and risk of dispersal beyond the immediately adjacent area.</p>","PeriodicalId":52366,"journal":{"name":"One Earth","volume":null,"pages":null},"PeriodicalIF":16.2,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141737324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Memorial to Arcadia Woodlands Clear-Cut 阿卡迪亚林地清切纪念碑
IF 16.2 1区 环境科学与生态学
One Earth Pub Date : 2024-07-19 DOI: 10.1016/j.oneear.2024.06.020
{"title":"Memorial to Arcadia Woodlands Clear-Cut","authors":"","doi":"10.1016/j.oneear.2024.06.020","DOIUrl":"https://doi.org/10.1016/j.oneear.2024.06.020","url":null,"abstract":"<p>In a world where &lt;30% of the Earth’s surface is land, competition for this limited but precious resource is fierce. To serve many basic living needs for a growing population, land has been converted into multiple uses, from farmland and properties to dumpsites, but often at the cost of deforestation. Andrea Bowers, a Los Angeles-based artist, commemorates a tree-siting protest via the hanging sculpture <em>Memorial to Arcadia Woodlands Clear-Cut</em>. In an attempt to save the clearing of a pristine grove of majestic oaks and sycamores in Arcadia for the sake of creating a sediment dump, Bowers and three other activists tied themselves to two treetops. At 100 ft above the ground, they witnessed the devastating clearance. After their release from a 2-day imprisonment, Bowers revisited the site and retrieved the legacy: a mountain of chippings. Together with ropes and other tree-sitting gear, Bowers forms the aftermath as a monument to the 250 cleared trees and their habitat.</p>","PeriodicalId":52366,"journal":{"name":"One Earth","volume":null,"pages":null},"PeriodicalIF":16.2,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141737322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
There is no human climate niche 不存在人类气候利基
IF 16.2 1区 环境科学与生态学
One Earth Pub Date : 2024-07-19 DOI: 10.1016/j.oneear.2024.06.009
{"title":"There is no human climate niche","authors":"","doi":"10.1016/j.oneear.2024.06.009","DOIUrl":"https://doi.org/10.1016/j.oneear.2024.06.009","url":null,"abstract":"<p>The idea that there exists a “human climate niche” has become increasingly influential. But this idea rests on flawed and anachronistic determinist premises. It is overly climate-centric in its characterization of the challenges faced by humanity, and it fails to capture the main sources of climate-related vulnerability.</p>","PeriodicalId":52366,"journal":{"name":"One Earth","volume":null,"pages":null},"PeriodicalIF":16.2,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141745571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sustainable land systems in the Anthropocene: Navigating the global land squeeze 人类世的可持续土地系统:驾驭全球土地挤压
IF 16.2 1区 环境科学与生态学
One Earth Pub Date : 2024-07-19 DOI: 10.1016/j.oneear.2024.06.011
{"title":"Sustainable land systems in the Anthropocene: Navigating the global land squeeze","authors":"","doi":"10.1016/j.oneear.2024.06.011","DOIUrl":"https://doi.org/10.1016/j.oneear.2024.06.011","url":null,"abstract":"<p>Rapidly progressing climate heating as well as ongoing economic and population growth exacerbate the challenges of reconciling the multitude of land functions and services. Terrestrial ecosystems support biodiversity and climate regulation and deliver resources like food, energy, or fiber, while infrastructures proliferate. Navigating the resulting “global land squeeze” aims to maintain a healthy biosphere while supporting land-based services for a decent living for us all. To elucidate trade-offs and synergies related to the global land squeeze, we discuss key components of the land system and their interplay, trade-offs, past trends, and current geographical patterns. We examine three social-science concepts and explore their suitability for navigating the land squeeze and identify demand-side strategies, like reducing overconsumption, that may emerge as no-regret solutions in industrialized contexts. We conclude that enhancing the analytical capabilities to steer land system change requires shifting from isolated driver-impact analyses toward the <em>ex ante</em> integration of societal and ecological sustainability targets on an equal footing.</p>","PeriodicalId":52366,"journal":{"name":"One Earth","volume":null,"pages":null},"PeriodicalIF":16.2,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141745575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dispossession, displacement, and disease: The global land squeeze and infectious disease emergence 剥夺、流离失所和疾病:全球土地挤压与传染病的出现
IF 16.2 1区 环境科学与生态学
One Earth Pub Date : 2024-07-19 DOI: 10.1016/j.oneear.2024.06.019
{"title":"Dispossession, displacement, and disease: The global land squeeze and infectious disease emergence","authors":"","doi":"10.1016/j.oneear.2024.06.019","DOIUrl":"https://doi.org/10.1016/j.oneear.2024.06.019","url":null,"abstract":"<p>Large-scale land acquisitions dispossess and marginalize smallholder farmers and Indigenous people, potentially driving zoonotic disease spillover and epidemics through complex socio-biological interactions. Agroecological practices and governance prioritizing human and environmental well-being over capital accumulation are essential to address this issue.</p>","PeriodicalId":52366,"journal":{"name":"One Earth","volume":null,"pages":null},"PeriodicalIF":16.2,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141737321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Critical overview of the implications of a global protein transition in the face of climate change: Key unknowns and research imperatives 批判性概述气候变化对全球蛋白质转型的影响:关键未知因素和研究要务
IF 16.2 1区 环境科学与生态学
One Earth Pub Date : 2024-07-19 DOI: 10.1016/j.oneear.2024.06.013
{"title":"Critical overview of the implications of a global protein transition in the face of climate change: Key unknowns and research imperatives","authors":"","doi":"10.1016/j.oneear.2024.06.013","DOIUrl":"https://doi.org/10.1016/j.oneear.2024.06.013","url":null,"abstract":"<p>Current dietary protein production and consumption are depleting resources, degrading the environment, and fueling chronic diseases. These human and environmental impacts ignite intense debate on how to shift away from resource-intensive animal-based proteins. While there is significant research across disciplines on shifting supply-demand aspects, knowledge gaps remain in how to transition to optimize nutrition while reducing bidirectional climate change effects. These gaps stymy incentives and policy change to make bold food systems transformations and determine levers to invest in. Here we present a transdisciplinary overview of evidence on proteins’ environmental impacts and vulnerability of crop, livestock, and aquatic proteins to climate change. We identify critical unknowns fueling concerns surrounding transitions and propose research directions to increase the likelihood transitions will be environmentally sound and healthy, harnessing genetic crop diversity, managing agricultural landscapes sustainably, and considering cell-based alternatives and pro-equity policies that facilitate healthy choices. Implementing changes requires nuanced, regionally tailored approaches incorporating socio-behavioral, public health, nutrition, and climate science fostering effective debate and solutions promoting sustainability and health.</p>","PeriodicalId":52366,"journal":{"name":"One Earth","volume":null,"pages":null},"PeriodicalIF":16.2,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141745574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clean air policy makes methane harder to control due to longer lifetime 清洁空气政策使甲烷寿命更长更难控制
IF 16.2 1区 环境科学与生态学
One Earth Pub Date : 2024-07-19 DOI: 10.1016/j.oneear.2024.06.010
{"title":"Clean air policy makes methane harder to control due to longer lifetime","authors":"","doi":"10.1016/j.oneear.2024.06.010","DOIUrl":"https://doi.org/10.1016/j.oneear.2024.06.010","url":null,"abstract":"<p>Achieving the Paris Agreement’s 1.5°C target necessitates reversing the rise in atmospheric concentrations of methane (CH<sub>4</sub>), which is a greenhouse gas that is more radiatively potent than carbon dioxide, and that possesses a considerably shorter lifetime. Future reductions in pollutants like nitrogen oxides for air quality improvement are anticipated, with a side effect of potentially extending the lifetime of CH<sub>4</sub>. However, at present the antagonism between air quality improvements and climate change response with respect to CH<sub>4</sub> lifetime is not being prominently addressed. Utilizing the GEOS-Chem model, we assessed CH<sub>4</sub> lifetime sensitivity to pollutant emissions. Applying this sensitivity to the OSCAR box model, we simulated future CH<sub>4</sub> dynamics, revealing that pollutant reduction in SSP1-26 compared to SSP2-45 could offset nearly 20% of CH<sub>4</sub> abatement efforts. Our study highlights the pollution abatement penalty in controlling atmospheric CH<sub>4</sub> concentrations, suggesting the need for escalated endeavors to combat climate change.</p>","PeriodicalId":52366,"journal":{"name":"One Earth","volume":null,"pages":null},"PeriodicalIF":16.2,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141737110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Immediate economic significance of nature, climate, and livelihood anxieties 自然、气候和生计焦虑的直接经济意义
IF 16.2 1区 环境科学与生态学
One Earth Pub Date : 2024-07-19 DOI: 10.1016/j.oneear.2024.06.004
{"title":"Immediate economic significance of nature, climate, and livelihood anxieties","authors":"","doi":"10.1016/j.oneear.2024.06.004","DOIUrl":"https://doi.org/10.1016/j.oneear.2024.06.004","url":null,"abstract":"<p>In this issue of <em>One Earth</em>, Pienkowski et al. propose a framework for nature’s contributions to social determinants of mental health. In this preview, Buckley examines how that framework fits within human economic structures and statistics and its potential political consequences.</p>","PeriodicalId":52366,"journal":{"name":"One Earth","volume":null,"pages":null},"PeriodicalIF":16.2,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141745572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Every plot, every acre, all at once: The global land squeeze 每一块土地、每一英亩土地,同时出现:全球土地挤压
IF 16.2 1区 环境科学与生态学
One Earth Pub Date : 2024-07-19 DOI: 10.1016/j.oneear.2024.06.021
{"title":"Every plot, every acre, all at once: The global land squeeze","authors":"","doi":"10.1016/j.oneear.2024.06.021","DOIUrl":"https://doi.org/10.1016/j.oneear.2024.06.021","url":null,"abstract":"No Abstract","PeriodicalId":52366,"journal":{"name":"One Earth","volume":null,"pages":null},"PeriodicalIF":16.2,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141737320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Q&A with Dr. Anuradha Mittal 与 Anuradha Mittal 博士的问答
IF 16.2 1区 环境科学与生态学
One Earth Pub Date : 2024-07-19 DOI: 10.1016/j.oneear.2024.06.015
{"title":"Q&A with Dr. Anuradha Mittal","authors":"","doi":"10.1016/j.oneear.2024.06.015","DOIUrl":"https://doi.org/10.1016/j.oneear.2024.06.015","url":null,"abstract":"<p>Anuradha Mittal is the executive director of the Oakland Institute, an independent policy think tank known for its rigorous research and analysis on key social, economic, and environmental issues. The Oakland Institute aims to inspire change through informed and active citizenship. We recently spoke with Dr. Mittal about the impact of carbon credits sales on land use.</p>","PeriodicalId":52366,"journal":{"name":"One Earth","volume":null,"pages":null},"PeriodicalIF":16.2,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141745573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信