Simeon Yuda Prasetyo, Ghinaa Zain Nabiilah, Zahra Nabila Izdihar, S. M. Isa
{"title":"Pneumonia Detection on X-Ray Imaging using Softmax Output in Multilevel Meta Ensemble Algorithm of Deep Convolutional Neural Network Transfer Learning Models","authors":"Simeon Yuda Prasetyo, Ghinaa Zain Nabiilah, Zahra Nabila Izdihar, S. M. Isa","doi":"10.26555/ijain.v9i2.884","DOIUrl":"https://doi.org/10.26555/ijain.v9i2.884","url":null,"abstract":"Pneumonia is the leading cause of death from a single infection worldwide in children. A proven clinical method for diagnosing pneumonia is through a chest X-ray. However, the resulting X-ray images often need clarification, resulting in subjective judgments. In addition, the process of diagnosis requires a longer time. One technique can be applied by applying advanced deep learning, namely, Transfer Learning with Deep Convolutional Neural Network (Deep CNN) and modified Multilevel Meta Ensemble Learning using Softmax. The purpose of this research was to improve the accuracy of the pneumonia classification model. This study proposes a classification model with a meta-ensemble approach using five classification algorithms: Xception, Resnet 15V2, InceptionV3, VGG16, and VGG19. The ensemble stage used two different concepts, where the first level ensemble combined the output of the Xception, ResNet15V2, and InceptionV3 algorithms. Then the output from the first ensemble level is reused for the following learning process, combined with the output from other algorithms, namely VGG16 and VGG19. This process is called ensemble level two. The classification algorithm used at this stage is the same as the previous stage, using KNN as a classification model. Based on experiments, the model proposed in this study has better accuracy than the others, with a test accuracy value of 98.272%. The benefit of this research could help doctors as a recommendation tool to make more accurate and timely diagnoses, thus speeding up the treatment process and reducing the risk of complications.","PeriodicalId":52195,"journal":{"name":"International Journal of Advances in Intelligent Informatics","volume":"20 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79861246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Image contrast enhancement for preserving entropy and image visual features","authors":"Bilal Bataineh","doi":"10.26555/ijain.v9i2.907","DOIUrl":"https://doi.org/10.26555/ijain.v9i2.907","url":null,"abstract":"Histogram equalization is essential for low-contrast enhancement in image processing. Several methods have been proposed; however, one of the most critical problems encountered by existing methods is their ability to preserve information in the enhanced image as the original. This research proposes an image enhancement method based on a histogram equalization approach that preserves the entropy and fine details similar to those of the original image. This is achieved through proposed probability density functions (PDFs) that preserve the small gray values of the usual PDF. The method consists of several steps. First, occurrences and clipped histograms are extracted according to the proposed thresholding. Then, they are equalized and used by a proposed transferring function to calculate the new pixel values in the enhanced image. The proposed method is compared with widely used methods such as Clahe, CS, HE, and GTSHE. Experiments using benchmark datasets and entropy, contrast, PSNR, and SSIM measurements are conducted to evaluate the performance. The results show that the proposed method is the only one that preserves the entropy of the enhanced image of the original image. In addition, it is efficient and reliable in enhancing image quality. This method preserves fine details and improves image quality, supporting computer vision and pattern recognition fields.","PeriodicalId":52195,"journal":{"name":"International Journal of Advances in Intelligent Informatics","volume":"28 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87324303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Arik Kurniawati, E. M. Yuniarno, Y. Suprapto, Aditya Nur Ikhsan Soewidiatmaka
{"title":"Automatic note generator for Javanese gamelan music accompaniment using deep learning","authors":"Arik Kurniawati, E. M. Yuniarno, Y. Suprapto, Aditya Nur Ikhsan Soewidiatmaka","doi":"10.26555/ijain.v9i2.1031","DOIUrl":"https://doi.org/10.26555/ijain.v9i2.1031","url":null,"abstract":"Javanese gamelan is a traditional form of music from Indonesia with a variety of styles and patterns. One of these patterns is the harmony music of the Bonang Barung and Bonang Penerus instruments. When playing gamelan, the resulting patterns can vary based on the music’s rhythm or dynamics, which can be challenging for novice players unfamiliar with the gamelan rules and notation system, which only provides melodic notes. Unlike in modern music, where harmony notes are often the same for all instruments, harmony music in Javanese gamelan is vital in establishing the character of a song. With technological advancements, musical composition can be generated automatically without human participation, which has become a trend in music generation research. This study proposes a method to generate musical accompaniment notes for harmony music using a bidirectional long-term memory (BiLSTM) network and compares it with recurrent neural network (RNN) and long-term memory (LSTM) models that use numerical notation to represent musical data, making it easier to learn the variations of harmony music in Javanese gamelan. This method replaces the gamelan composer in completing the notation for all the instruments in a song. To evaluate the generated harmonic music, note distance, dynamic time warping (DTW), and cross-correlation techniques were used to measure the distance between the system-generated results and the gamelan composer's creations. In addition, audio features were extracted and used to visualize the audio. The experimental results show that all models produced better accuracy results when using all features of the song, reaching a value of around 90%, compared to using only 2 features (rhythm and note of melody), which reached 65-70%. Furthermore, the BiLSTM model produced musical harmonies that were more similar to the original music (+93%) than those generated by the LSTM (+92%) and RNN (+90%). This study can be applied to performing Javanese gamelan music.","PeriodicalId":52195,"journal":{"name":"International Journal of Advances in Intelligent Informatics","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74344458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Besari, Azhar Aulia Saputra, W. Chin, Kurnianingsih Kurnianingsih, N. Kubota
{"title":"Hand–object interaction recognition based on visual attention using multiscopic cyber-physical-social system","authors":"A. Besari, Azhar Aulia Saputra, W. Chin, Kurnianingsih Kurnianingsih, N. Kubota","doi":"10.26555/ijain.v9i2.901","DOIUrl":"https://doi.org/10.26555/ijain.v9i2.901","url":null,"abstract":"Computer vision-based cyber-physical-social systems (CPSS) are predicted to be the future of independent hand rehabilitation. However, there is a link between hand function and cognition in the elderly that this technology has not adequately supported. To investigate this issue, this paper proposes a multiscopic CPSS framework by developing hand–object interaction (HOI) based on visual attention. First, we use egocentric vision to extract features from hand posture at the microscopic level. With 94.87% testing accuracy, we use three layers of graph neural network (GNN) based on hand skeletal features to categorize 16 grasp postures. Second, we use a mesoscopic active perception ability to validate the HOI with eye tracking in the task-specific reach-to-grasp cycle. With 90.75% testing accuracy, the distance between the fingertips and the center of an object is used as input to a multi-layer gated recurrent unit based on recurrent neural network architecture. Third, we incorporate visual attention into the cognitive ability for classifying multiple objects at the macroscopic level. In two scenarios with four activities, we use GNN with three convolutional layers to categorize some objects. The outcome demonstrates that the system can successfully separate objects based on related activities. Further research and development are expected to support the CPSS application in independent rehabilitation.","PeriodicalId":52195,"journal":{"name":"International Journal of Advances in Intelligent Informatics","volume":"23 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73940509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fachrul Kurniawan, Sarina Sulaiman, Siaka Konate, M. A. Abdalla
{"title":"Deep learning approaches for MIMO time-series analysis","authors":"Fachrul Kurniawan, Sarina Sulaiman, Siaka Konate, M. A. Abdalla","doi":"10.26555/ijain.v9i2.1092","DOIUrl":"https://doi.org/10.26555/ijain.v9i2.1092","url":null,"abstract":"This study presents a comparative analysis of various deep learning (DL) methods for multi-input and multi-output (MIMO) time-series forecasting of stock prices. The analysis is conducted on a dataset comprising the stock price of Bitcoin. The dataset consists of 2950 rows from December 2017 to December 2021. This study aims to evaluate the performance of multiple DL methods, including Multilayer Perceptron (MLP), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Long Short Term Memory (LSTM), Bidirectional LSTM (Bi-LSTM), and Gated Recurrent Unit (GRU). The evaluation criteria for selecting the best-performing methods in this research are based on two performance metrics: Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE). These metrics were chosen for specific reasons related to assessing the accuracy and reliability of the forecasting models. MAPE is used to assess accuracy, while RMSE helps detect outliers in the system. Results show that the LSTM method achieves the best performance, outperforming other methods with an average MAPE value of 8.73% and Bi-LSTM has the best average RMSE value of 0.02216. The findings of this study have practical implications for time-series forecasting in the field of stock trading. The superior performance of LSTM highlights its potential as a reliable method for accurately predicting stock prices. The Bi-LSTM model's ability to detect outliers can aid in identifying abnormal stock market behavior. In summary, this research provides insights into the performance of various DL models of MIMO for stock price forecasting. The results contribute to the field of time-series forecasting and offer valuable guidance for decision-making in stock trading by identifying the most effective methods for predicting stock prices accurately and detecting unusual market behavior.","PeriodicalId":52195,"journal":{"name":"International Journal of Advances in Intelligent Informatics","volume":"237 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78777804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A hybrid model for aspect-based sentiment analysis on customer feedback: research on the mobile commerce sector in Vietnam","authors":"T. Ho, Hien Minh Bui, Phung Kim Thai","doi":"10.26555/ijain.v9i2.976","DOIUrl":"https://doi.org/10.26555/ijain.v9i2.976","url":null,"abstract":"Feedback and comments on mobile commerce applications are extremely useful and valuable information sources that reflect the quality of products or services to determine whether data is positive or negative and help businesses monitor brand and product sentiment in customers’ feedback and understand customers’ needs. However, the increasing number of comments makes it increasingly difficult to understand customers using manual methods. To solve this problem, this study builds a hybrid research model based on aspect mining and comment classification for aspect-based sentiment analysis (ABSA) to deeply comprehend the customer and their experiences. Based on previous classification results, we first construct a dictionary of positive and negative words in the e-commerce field. Then, the POS tagging technique is applied for word classification in Vietnamese to extract aspects of model commerce related to positive or negative words. The model is implemented with machine and deep learning methods on a corpus comprising more than 1,000,000 customer opinions collected from Vietnam's four largest mobile commerce applications. Experimental results show that the Bi-LSTM method has the highest accuracy with 92.01%; it is selected for the proposed model to analyze the viewpoint of words on real data. The findings are that the proposed hybrid model can be applied to monitor online customer experience in real time, enable administrators to make timely and accurate decisions, and improve the quality of products and services to take a competitive advantage.","PeriodicalId":52195,"journal":{"name":"International Journal of Advances in Intelligent Informatics","volume":"13 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85450121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multi-granularity active learning based on the three-way decision","authors":"Wu Xiaogang, Thitipong Thitipong","doi":"10.26555/ijain.v9i2.1036","DOIUrl":"https://doi.org/10.26555/ijain.v9i2.1036","url":null,"abstract":"The reliance on data and the high cost of data labelling are the main problems facing deep learning today. Active learning aims to make the best model with as few training samples as possible. Previous query strategies for active learning have mainly used the uncertainty and diversity criteria, and have not considered the data distribution's multi-granularity. To extract more valid information from the samples, we use three-way decisions to select uncertain samples and propose a multi-granularity active learning method (MGAL). The model divides the unlabeled samples into three parts: positive, negative and boundary region. Through active iterative training samples, the decision delay of the boundary domain can reduce the decision cost. We validated the model on five UCI datasets and the CIFAR10 dataset. The experimental results show that the cost of three-way decisions is lower than that of two-way decisions. The multi-granularity active learning achieves good classification results, which validates the model. In this case study, the reader can learn about the ideas and methods of the three-way decision theory applied to deep learning.","PeriodicalId":52195,"journal":{"name":"International Journal of Advances in Intelligent Informatics","volume":"65 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85778104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Understanding requirements dependency in requirements prioritization: a systematic literature review","authors":"F. Noviyanto, R. Razali, M. Nazree","doi":"10.26555/ijain.v9i2.1082","DOIUrl":"https://doi.org/10.26555/ijain.v9i2.1082","url":null,"abstract":"Requirement prioritization (RP) is a crucial task in managing requirements as it determines the order of implementation and, thus, the delivery of a software system. Improper RP may cause software project failures due to over budget and schedule as well as a low-quality product. Several factors influence RP. One of which is requirements dependency. Handling inappropriate handling of requirements dependencies can lead to software development failures. If a requirement that serves as a prerequisite for other requirements is given low priority, it affects the overall project completion time. Despite its importance, little is known about requirements dependency in RP, particularly its impacts, types, and techniques. This study, therefore, aims to understand the phenomenon by analyzing the existing literature. It addresses three objectives, namely, to investigate the impacts of requirements dependency on RP, to identify different types of requirements dependency, and to discover the techniques used for requirements dependency problems in RP. To fulfill the objectives, this study adopts the Systematic Literature Review (SLR) method. Applying the SLR protocol, this study selected forty primary articles, which comprise 58% journal papers, 32% conference proceedings, and 10% book sections. The results of data synthesis indicate that requirements dependency has significant impacts on RP, and there are a number of requirements dependency types as well as techniques for addressing requirements dependency problems in RP. This research discovered various techniques employed, including the use of Graphs for RD visualization, Machine Learning for handling large-scale RP, decision making for multi-criteria handling, and optimization techniques utilizing evolutionary algorithms. The study also reveals that the existing techniques have encountered serious limitations in terms of scalability, time consumption, interdependencies of requirements, and limited types of requirement dependencies.","PeriodicalId":52195,"journal":{"name":"International Journal of Advances in Intelligent Informatics","volume":"47 5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82778680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An advanced deep learning model for maneuver prediction in real-time systems using alarming-based hunting optimization","authors":"Swati Jaiswal, C. Balasubramanian","doi":"10.26555/ijain.v9i2.1048","DOIUrl":"https://doi.org/10.26555/ijain.v9i2.1048","url":null,"abstract":"The increasing trend of autonomous driving vehicles in smart cities emphasizes the need for safe travel. However, the presence of obstacles, potholes, and complex road environments, such as poor illumination and occlusion, can cause blurred road images that may impact the accuracy of maneuver prediction in visual perception systems. To address these challenges, a novel ensemble model named ABHO-based deep CNN-BiLSTM has been proposed for traffic sign detection. This model combines a hybrid convolutional neural network (CNN) and bidirectional long short-term memory (BiLSTM) with the alarming-based hunting optimization (ABHO) algorithm to improve maneuver prediction accuracy. Additionally, a modified hough-enabled lane generative adversarial network (ABHO based HoughGAN) has been proposed, which is designed to be robust to blurred images. The ABHO algorithm, inspired by the defending and social characteristics of starling birds and Canis kojot, allows the model to efficiently search for the optimal solution from the available solutions in the search space. The proposed ensemble model has shown significantly improved accuracy, sensitivity, and specificity in maneuver prediction compared to previously utilized methods, with minimal error during lane detection. Overall, the proposed ensemble model addresses the challenges faced by autonomous driving vehicles in complex and obstructed road environments, offering a promising solution for enhancing safety and reliability in smart cities.","PeriodicalId":52195,"journal":{"name":"International Journal of Advances in Intelligent Informatics","volume":"15 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75257486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multi-step CNN forecasting for COVID-19 multivariate time-series","authors":"H. Haviluddin, Rayner Alfred","doi":"10.26555/ijain.v9i2.1080","DOIUrl":"https://doi.org/10.26555/ijain.v9i2.1080","url":null,"abstract":"The new coronavirus (COVID-19) has spread to over 200 countries, with over 36 million confirmed cases as of October 10, 2020. As a result, numerous machine learning models capable of forecasting the epidemic worldwide have been produced. This paper reviews and summarizes the most relevant machine learning forecasting models for COVID-19. The dataset is derived from the world health organization (WHO) COVID-19 dashboard, and it contains official daily counts of COVID-19 cases, fatalities, and vaccination use reported by countries, territories, and regions. We propose various convolutional neural network (CNN) based models such as CNN, single exponential smoothing CNN (S-CNN), moving average CNN (MA-CNN), smoothed moving average CNN (SMA-CNN), and moving average smoothed CNN (MAS-CNN). Here, MAPE and MSE are used to assess the suggested models. MAPE is frequently used to compare accuracy across time series with different scales. MSE, the model must strive for a total forecast equal to the entire demand. That is, optimizing MSE seeks to create a forecast that is right on average and so unbiased. The final result shows that SMA-CNN outperformed its baselines in both MAPE and MSE. The main contribution of this novel forecasting approach is a more accurate result as a base of the strategy of preventing COVID-19 spreads.","PeriodicalId":52195,"journal":{"name":"International Journal of Advances in Intelligent Informatics","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89164910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}