The Journal of Clinical Investigation最新文献

筛选
英文 中文
Natural TCRs targeting KRASG12V display fine specificity and sensitivity to human solid tumors. 靶向 KRASG12V 的天然 TCR 对人类实体瘤具有很好的特异性和敏感性。
The Journal of Clinical Investigation Pub Date : 2024-09-17 DOI: 10.1172/jci175790
Adham S Bear,Rebecca B Nadler,Mark H O'Hara,Kelsey L Stanton,Chong Xu,Robert J Saporito,Andrew J Rech,Miren L Baroja,Tatiana Blanchard,Maxwell H Elliott,Michael J Ford,Richard C Jones,Shivang Patel,Andrea L Brennan,Zachary O'Neil,Daniel J Powell,Robert H Vonderheide,Gerald P Linette,Beatriz M Carreno
{"title":"Natural TCRs targeting KRASG12V display fine specificity and sensitivity to human solid tumors.","authors":"Adham S Bear,Rebecca B Nadler,Mark H O'Hara,Kelsey L Stanton,Chong Xu,Robert J Saporito,Andrew J Rech,Miren L Baroja,Tatiana Blanchard,Maxwell H Elliott,Michael J Ford,Richard C Jones,Shivang Patel,Andrea L Brennan,Zachary O'Neil,Daniel J Powell,Robert H Vonderheide,Gerald P Linette,Beatriz M Carreno","doi":"10.1172/jci175790","DOIUrl":"https://doi.org/10.1172/jci175790","url":null,"abstract":"BACKGROUNDNeoantigens derived from KRASMUT have been described, but the fine antigen specificity of T cell responses directed against these epitopes are poorly understood. Here, we explore KRASMUT immunogenicity and the properties of 4 TCRs specific for KRASG12V restricted to HLA-A3 superfamily of class I alleles.METHODSA phase I clinical vaccine trial targeting KRASMUT was conducted. TCRs targeting KRASG12V restricted to HLA-A*03:01 or HLA-A*11:01 were isolated from vaccinated patients or healthy individuals. A comprehensive analysis of TCR antigen specificity, affinity, cross-reactivity, and CD8 coreceptor dependence was performed. TCR lytic activity was evaluated, and target antigen density was determined by quantitative immunopeptidomics.RESULTSVaccination against KRASMUT resulted in the priming of CD8+ and CD4+ T cell responses. KRASG12V -specific natural (not affinity-enhanced) TCRs exhibited exquisite specificity to mutated protein with no discernable reactivity against KRASWT. TCR-recognition motifs were determined and used to identify and exclude cross-reactivity to non-cognate peptides derived from the human proteome. Both HLA-A*03:01 and HLA-A*11:01 restricted TCR-redirected CD8+ T cells exhibited potent lytic activity against KRASG12V cancers, while only HLA-A*11:01 restricted TCR-T CD4+ T cells exhibited anti-tumor effector functions consistent with partial co-receptor dependence. All KRASG12V-specific TCRs displayed high sensitivity for antigen as demonstrated by their ability to eliminate tumor cell lines expressing low levels of of peptide/HLA (4.4 to 242) complexes per cell.CONCLUSIONThis study identifies KRASG12V-specific TCRs with high therapeutic potential for the development of TCR-T cell therapies.TRIAL REGISTRATIONCLINICALTRIALSgov NCT03592888.FUNDINGAACR SU2C / Lustgarten Foundation, Parker Institute for Cancer Immunotherapy, and NIH (R01 CA204261, P01 CA217805, P30 CA016520).","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142245520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting aryl hydrocarbon receptor functionally restores tolerogenic dendritic cells derived from patients with multiple sclerosis. 靶向芳基烃受体可恢复多发性硬化症患者的耐受性树突状细胞功能。
The Journal of Clinical Investigation Pub Date : 2024-09-17 DOI: 10.1172/jci178949
Federico Fondelli,Jana Willemyns,Roger Domenech-Garcia,Maria José Mansilla,Gerard Godoy-Tena,Anna G Ferreté-Bonastre,Alex Agúndez-Moreno,Silvia Presas-Rodriguez,Cristina Ramo-Tello,Esteban Ballestar,Eva Martínez-Cáceres
{"title":"Targeting aryl hydrocarbon receptor functionally restores tolerogenic dendritic cells derived from patients with multiple sclerosis.","authors":"Federico Fondelli,Jana Willemyns,Roger Domenech-Garcia,Maria José Mansilla,Gerard Godoy-Tena,Anna G Ferreté-Bonastre,Alex Agúndez-Moreno,Silvia Presas-Rodriguez,Cristina Ramo-Tello,Esteban Ballestar,Eva Martínez-Cáceres","doi":"10.1172/jci178949","DOIUrl":"https://doi.org/10.1172/jci178949","url":null,"abstract":"Multiple Sclerosis (MS) is a chronic disease characterized by dysregulated self-reactive immune responses that damage the neurons' myelin sheath, leading to progressive disability. The primary therapeutic option, immunosuppressants, inhibits pathogenic anti-myelin responses but depresses the immune system. Antigen-specific monocyte-derived autologous tolerogenic dendritic cells (tolDCs) offer alternative therapeutic approaches to restore tolerance to auto-antigens without causing generalized immunosuppression. However, immune dysregulation in MS could impact the properties of the monocytes used as starting material for this cell therapy. Here, we characterized CD14+ monocytes, mature dendritic cells (mDCs) and Vitamin-D3-tolDCs (VitD3-tolDCs) from active, treatment-naive MS patients and healthy donors (HD). Using multi-omics, we identified a switch in these cell types towards proinflammatory features characterized by alterations in the AhR and NF-kB pathways. MS patient-derived VitD3-tolDCs showed reduced tolerogenic properties compared to those from HD, which were fully restored through direct AhR agonism and using in vivo or in vitro Dimethyl Fumarate (DMF) supplementation. Additionally, in the experimental autoimmune encephalomyelitis (EAE) mouse model, combined therapy of DMF and VitD3-tolDCs was more efficient than monotherapies in reducing the clinical score of mice. We propose that a combined therapy with DMF and VitD3-tolDCs offers enhanced therapeutic potential in treating MS.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142245184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uterine cyclin A2 deficient mice as a model of female early pregnancy loss. 子宫细胞周期蛋白 A2 缺陷小鼠作为女性早孕损失的模型。
The Journal of Clinical Investigation Pub Date : 2024-09-12 DOI: 10.1172/jci163796
Fatimah Aljubran,Katelyn Schumacher,Amanda Graham,Sumedha Gunewardena,Courtney Marsh,Michael Lydic,Kristin Holoch,Warren B Nothnick
{"title":"Uterine cyclin A2 deficient mice as a model of female early pregnancy loss.","authors":"Fatimah Aljubran,Katelyn Schumacher,Amanda Graham,Sumedha Gunewardena,Courtney Marsh,Michael Lydic,Kristin Holoch,Warren B Nothnick","doi":"10.1172/jci163796","DOIUrl":"https://doi.org/10.1172/jci163796","url":null,"abstract":"Proper action of the female sex steroids, 17β-estradiol (E2) and progesterone (P4) on endometrium is essential for fertility. Beyond its role in regulating the cell cycle, cyclin A2 (CCNA2) also mediates E2 and P4 signaling in vitro, but a potential role in modulating steroid action for proper endometrial tissue development and function is unknown. To fill this gap in our knowledge, we examined human endometrial tissue from fertile and infertile women for CCNA2 expression and correlated this with pregnancy outcome. Functional assessment of CCNA2 was validated in vivo using a conditional Ccna2 uterine deficient mouse model while in vitro function was assessed using human cell culture models. We found that CCNA2 expression was significantly reduced in endometrial tissue, specifically the stromal cells, from women undergoing in vitro fertilization who failed to achieve pregnancy. Conditional deletion of Ccna2 from mouse uterine tissue resulted in an inability to achieve pregnancy which appears to be due to alterations in the process of decidualization, which was confirmed using in vitro models. From these studies, we conclude that CCNA2 expression during the proliferative/regenerative stage of the menstrual cycle acts as a safeguard allowing for proper steroid responsiveness, decidualization and pregnancy. When CCNA2 expression levels are insufficient there is impaired endometrial responsiveness, aberrant decidualization and loss of pregnancy.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142231322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A six-year study in a real-world population reveals an increased incidence of dyslipidemia during COVID-19. 一项为期六年的实际人群研究显示,在 COVID-19 期间,血脂异常的发生率有所增加。
The Journal of Clinical Investigation Pub Date : 2024-09-12 DOI: 10.1172/jci183777
Valentina Trimarco,Raffaele Izzo,Stanislovas S Jankauskas,Mario Fordellone,Giuseppe Signoriello,Maria Virginia Manzi,Maria Lembo,Paola Gallo,Giovanni Esposito,Roberto Piccinocchi,Francesco Rozza,Carmine Morisco,Pasquale Mone,Gaetano Piccinocchi,Fahimeh Varzideh,Bruno Trimarco,Gaetano Santulli
{"title":"A six-year study in a real-world population reveals an increased incidence of dyslipidemia during COVID-19.","authors":"Valentina Trimarco,Raffaele Izzo,Stanislovas S Jankauskas,Mario Fordellone,Giuseppe Signoriello,Maria Virginia Manzi,Maria Lembo,Paola Gallo,Giovanni Esposito,Roberto Piccinocchi,Francesco Rozza,Carmine Morisco,Pasquale Mone,Gaetano Piccinocchi,Fahimeh Varzideh,Bruno Trimarco,Gaetano Santulli","doi":"10.1172/jci183777","DOIUrl":"https://doi.org/10.1172/jci183777","url":null,"abstract":"BACKGROUNDRecent studies conducted in COVID-19 survivors suggest that SARS-CoV-2 infection is associated with an increased risk of dyslipidemia. However, it remains unclear whether this augmented risk is confirmed in the general population and how this phenomenon is impacting the overall burden of cardiometabolic diseases.METHODSTo address these aspects, we conducted a 6-year longitudinal study to examine the broader effects of COVID-19 on dyslipidemia incidence within a real-world population (228,266 subjects) residing in Naples, Southern Italy. The pre-COVID-19 and the COVID-19 groups were balanced for demographic and clinical factors using propensity score matching.RESULTSOur analysis spans over a period of three years during the pandemic (2020-2022), comparing dyslipidemia incidence with pre-pandemic data (2017-2019), with a follow-up time of at least 1,095 days corresponding to 21,349,215 person-years. During the COVID-19 period we detected an increased risk of developing any dyslipidemia when compared with the pre-COVID-19 triennium (OR = 1.29, 95% CI 1.19-1.39). Importantly, these estimates were adjusted for comorbidities by a multivariate analysis.CONCLUSIONSTaken together, our data reveal a notable rise in dyslipidemia incidence amid the COVID-19 pandemic, suggesting to establish specialized clinical monitoring protocols for COVID-19 survivors to mitigate the risk of dyslipidemia development.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142231320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Postprandial metabolomics analysis reveals disordered serotonin metabolism in post-bariatric hypoglycemia. 餐后代谢组学分析揭示了减肥后低血糖症中紊乱的血清素代谢。
The Journal of Clinical Investigation Pub Date : 2024-09-12 DOI: 10.1172/jci180157
Rafael Ferraz-Bannitz,Berkcan Ozturk,Cameron J Cummings,Vissarion Efthymiou,Pilar Casanova Querol,Lindsay Poulos,Hanna J Wang,Valerie Navarrete,Hamayle Saeed,Christopher M Mulla,Hui Pan,Jonathan M Dreyfuss,Donald C Simonson,Darleen A Sandoval,Mary-Elizabeth Patti
{"title":"Postprandial metabolomics analysis reveals disordered serotonin metabolism in post-bariatric hypoglycemia.","authors":"Rafael Ferraz-Bannitz,Berkcan Ozturk,Cameron J Cummings,Vissarion Efthymiou,Pilar Casanova Querol,Lindsay Poulos,Hanna J Wang,Valerie Navarrete,Hamayle Saeed,Christopher M Mulla,Hui Pan,Jonathan M Dreyfuss,Donald C Simonson,Darleen A Sandoval,Mary-Elizabeth Patti","doi":"10.1172/jci180157","DOIUrl":"https://doi.org/10.1172/jci180157","url":null,"abstract":"BACKGROUNDBariatric surgery is a potent therapeutic approach for obesity and type 2 diabetes but can be complicated by post-bariatric hypoglycemia (PBH). PBH typically occurs 1 to 3 hours after meals, in association with exaggerated postprandial levels of incretins and insulin.METHODSTo identify mediators of disordered metabolism in PBH, we analyzed plasma metabolome in fasting state and 30 and 120 minutes after mixed meal in 3 groups: PBH (n = 13), asymptomatic post-RYGB (n = 10), and non-surgical controls (n = 8).RESULTSIn the fasting state, multiple tricarboxylic acid cycle intermediates and the ketone beta-hydroxybutyrate were increased by 30% to 80% in PBH vs. asymptomatic. Conversely, multiple amino acids (BCAA, tryptophan) and polyunsaturated lipids were reduced by 20% to 50% in PBH versus asymptomatic. Tryptophan-related metabolites, including kynurenate, xanthurenate, and serotonin, were reduced by 2- to 10-fold in PBH in fasting state. Postprandially, plasma serotonin was uniquely increased by 1.9-fold in PBH versus asymptomatic post-RYGB. In mice, serotonin administration lowered glucose and increased plasma insulin and GLP-1. Moreover, serotonin-induced hypoglycemia in mice was blocked by the nonspecific serotonin receptor antagonist cyproheptadine and the specific serotonin receptor 2 antagonist ketanserin.CONCLUSIONTogether these data suggest that increased postprandial serotonin may contribute to the pathophysiology of PBH and provide a potential therapeutic target.FUNDINGNIH grant R01 DK121995, NIH grant P30 DK036836 (Diabetes Research Center grant, Joslin Diabetes Center), and Fundação de Amparo à Pesquisa do Estado de São Paulo-FAPESP grant 2018/22111-2.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142231323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Longitudinal analysis of viral dynamics in HIV+ to HIV+ HOPE Act kidney-transplant recipients. HIV+到HIV+ HOPE法案肾移植受者病毒动态纵向分析。
The Journal of Clinical Investigation Pub Date : 2024-09-10 DOI: 10.1172/jci181560
Tatianna Travieso,Hannah Stadtler,Naseem Alavian,Feng Gao,Mary Klotman,Cameron R Wolfe,Maria Blasi
{"title":"Longitudinal analysis of viral dynamics in HIV+ to HIV+ HOPE Act kidney-transplant recipients.","authors":"Tatianna Travieso,Hannah Stadtler,Naseem Alavian,Feng Gao,Mary Klotman,Cameron R Wolfe,Maria Blasi","doi":"10.1172/jci181560","DOIUrl":"https://doi.org/10.1172/jci181560","url":null,"abstract":"BACKGROUNDThe HIV Organ Policy Equity (HOPE) Act allows individuals living with HIV to accept organs from donors with HIV. This practice widens the pool of available organs, but also presents important virological questions, including the potential for HIV superinfection of the recipient, viral persistence in the kidney, and loss of virological control.METHODSWe addressed these questions by performing in-depth longitudinal viral sequence analyses on urine, blood, and urine-derived renal epithelial cells from twelve recipients of HIV+ kidney allografts.RESULTSWe amplified donor-derived HIV-1 env sequences in 5 out of 12 recipients post-transplant. These donor-derived env sequences were amplified from recipient urine, urine-derived renal epithelial cells, and plasma between 12 and 96-hours post-transplant and remained detectable up to 16-days post-transplant. Env sequences were also detected in kidney biopsies taken from the allografts before implantation in 6 out of the 12 transplant cases, indicating the presence of donor virus within the organ. One recipient had a viremic episode 3.5 years after transplantation as a result of ART interruption. Only recipient strain viral sequences were detected in blood, suggesting that the donor virus, if still present, was not reactivated during the temporary ART withdrawal.CONCLUSIONSThis study demonstrates that the HIV env sequences in a donor kidney can be amplified from biopsies taken from the allograft before implantation and can be detected transiently in blood and urine samples collected from the organ recipients post-transplantation.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142171099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Il-13 induces loss of CFTR in ionocytes and reduces airway epithelial fluid absorption. Il-13 会诱导离子细胞中 CFTR 的缺失,减少气道上皮细胞对液体的吸收。
The Journal of Clinical Investigation Pub Date : 2024-09-10 DOI: 10.1172/jci181995
Guillermo S Romano Ibarra,Lei Lei,Wenjie Yu,Andrew L Thurman,Nicholas D Gansemer,David K Meyerholz,Alejandro A Pezzulo,Paul B McCray,Ian M Thornell,David A Stoltz
{"title":"Il-13 induces loss of CFTR in ionocytes and reduces airway epithelial fluid absorption.","authors":"Guillermo S Romano Ibarra,Lei Lei,Wenjie Yu,Andrew L Thurman,Nicholas D Gansemer,David K Meyerholz,Alejandro A Pezzulo,Paul B McCray,Ian M Thornell,David A Stoltz","doi":"10.1172/jci181995","DOIUrl":"https://doi.org/10.1172/jci181995","url":null,"abstract":"The airway surface liquid (ASL) plays a crucial role in lung defense mechanisms, and its composition and volume are regulated by the airway epithelium. The cystic fibrosis transmembrane conductance regulator (CFTR) is abundantly expressed in a rare airway epithelial cell type called an ionocyte. Recently, we demonstrated that ionocytes can increase liquid absorption through apical CFTR and basolateral barttin/chloride channels, while airway secretory cells mediate liquid secretion through apical CFTR channels and basolateral NKCC1 transporters. Th2-driven (IL-4/IL-13) airway diseases, such as asthma, cause goblet cell metaplasia, accompanied by increased mucus production and airway secretions. In this study, we investigate the effect of IL-13 on chloride and liquid transport performed by ionocytes. IL-13 treatment of human airway epithelia was associated with reduced epithelial liquid absorption rates and increased ASL volume. Additionally, IL-13 treatment reduced the abundance of CFTR-positive ionocytes and increased the abundance of CFTR-positive secretory cells. Increasing ionocyte abundance attenuated liquid secretion caused by IL-13. Finally, CFTR-positive ionocytes were less common in asthma and COPD and associated with airflow obstruction. Our findings suggest that loss of CFTR in ionocytes contributes to the liquid secretion observed in IL-13-mediated airway diseases.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142171100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epigenetic regulation of cell state by H2AFY governs immunogenicity in high-risk neuroblastoma. H2AFY对细胞状态的表观遗传调控制约着高危神经母细胞瘤的免疫原性。
The Journal of Clinical Investigation Pub Date : 2024-09-10 DOI: 10.1172/jci175310
Divya Nagarajan,Rebeca T Parracho,David Corujo,Minglu Xie,Ginte Kutkaite,Thale K Olsen,Marta Rúbies Bedós,Maede Salehi,Ninib Baryawno,Michael P Menden,Xingqi Chen,Marcus Buschbeck,Yumeng Mao
{"title":"Epigenetic regulation of cell state by H2AFY governs immunogenicity in high-risk neuroblastoma.","authors":"Divya Nagarajan,Rebeca T Parracho,David Corujo,Minglu Xie,Ginte Kutkaite,Thale K Olsen,Marta Rúbies Bedós,Maede Salehi,Ninib Baryawno,Michael P Menden,Xingqi Chen,Marcus Buschbeck,Yumeng Mao","doi":"10.1172/jci175310","DOIUrl":"https://doi.org/10.1172/jci175310","url":null,"abstract":"Childhood neuroblastoma with MYCN-amplification is classified as high-risk and often relapses after intensive treatments. Immune checkpoint blockade therapy against the PD-1/L1 axis shows limited efficacy in neuroblastoma patients and the cancer intrinsic immune regulatory network is poorly understood. Here, we leverage genome-wide CRISPR/Cas9 screens and identify H2AFY as a resistance gene to the clinically approved PD-1 blocking antibody, nivolumab. Analysis of single-cell RNA sequencing datasets reveals that H2AFY mRNA is enriched in adrenergic cancer cells and is associated with worse patient survival. Genetic deletion of H2afy in MYCN-driven neuroblastoma cells reverts in vivo resistance to PD-1 blockade by eliciting activation of the adaptive and innate immunity. Mapping of the epigenetic and translational landscape demonstrates that H2afy deletion promotes cell transition to a mesenchymal-like state. With a multi-omics approach, we uncover H2AFY-associated genes that are functionally relevant and prognostic in patients. Altogether, our study elucidates the role of H2AFY as an epigenetic gatekeeper for cell states and immunogenicity in high-risk neuroblastoma.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142171102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antibiotic use during influenza infection augments lung eosinophils that impair immunity against secondary bacterial pneumonia. 流感感染期间使用抗生素会增加肺部嗜酸性粒细胞,从而损害对继发性细菌性肺炎的免疫力。
The Journal of Clinical Investigation Pub Date : 2024-09-10 DOI: 10.1172/jci180986
Marilia Sanches Santos Rizzo Zuttion,Tanyalak Parimon,Stephanie A Bora,Changfu Yao,Katherine Lagree,Catherine A Gao,Richard G Wunderink,Georgios D Kitsios,Alison Morris,Yingze Zhang,Bryan J McVerry,Matthew E Modes,Alberto M Marchevsky,Barry R Stripp,Christopher M Soto,Ying Wang,Kimberly Merene,Silvia Cho,Blandine L Victor,Ivan Vujkovic-Cvijin,Suman Gupta,Suzanne Cassel,Fayyaz S Sutterwala,Suzanne Devkota,David M Underhill,Peter Chen
{"title":"Antibiotic use during influenza infection augments lung eosinophils that impair immunity against secondary bacterial pneumonia.","authors":"Marilia Sanches Santos Rizzo Zuttion,Tanyalak Parimon,Stephanie A Bora,Changfu Yao,Katherine Lagree,Catherine A Gao,Richard G Wunderink,Georgios D Kitsios,Alison Morris,Yingze Zhang,Bryan J McVerry,Matthew E Modes,Alberto M Marchevsky,Barry R Stripp,Christopher M Soto,Ying Wang,Kimberly Merene,Silvia Cho,Blandine L Victor,Ivan Vujkovic-Cvijin,Suman Gupta,Suzanne Cassel,Fayyaz S Sutterwala,Suzanne Devkota,David M Underhill,Peter Chen","doi":"10.1172/jci180986","DOIUrl":"https://doi.org/10.1172/jci180986","url":null,"abstract":"A leading cause of mortality after influenza infection is the development of a secondary bacterial pneumonia. In the absence of a bacterial superinfection, prescribing antibacterial therapies is not indicated but has become a common clinical practice for those presenting with a respiratory viral illness. In a murine model, we found that antibiotic use during influenza infection impaired the lung innate immunologic defenses toward a secondary challenge with methicillin-resistant Staphylococcus aureus (MRSA). Antibiotics augment lung eosinophils, which have inhibitory effects on macrophage function through the release of major basic protein. Moreover, we demonstrated antibiotic treatment during influenza infection causes a fungal dysbiosis that drive lung eosinophilia and impair MRSA clearance. Finally, we evaluated three cohorts of hospitalized patients and found eosinophils positively correlated with antibiotic use, systemic inflammation, and worsened outcomes. Altogether, our work demonstrates a detrimental effect of antibiotic treatment during influenza infection that has harmful immunologic consequences via recruitment of eosinophils to the lungs thereby increasing the risk of developing a secondary bacterial infection.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142171101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabolic rewiring during bone development underlies tRNA m7G-associated primordial dwarfism. 骨骼发育过程中的代谢重构是与 tRNA m7G 相关的原始侏儒症的基础。
The Journal of Clinical Investigation Pub Date : 2024-09-10 DOI: 10.1172/jci177220
Qiwen Li,Shuang Jiang,Kexin Lei,Hui Han,Yaqian Chen,Weimin Lin,Qiuchan Xiong,Xingying Qi,Xinyan Gan,Rui Sheng,Yuan Wang,Yarong Zhang,Jieyi Ma,Tao Li,Shuibin Lin,Chenchen Zhou,Demeng Chen,Quan Yuan
{"title":"Metabolic rewiring during bone development underlies tRNA m7G-associated primordial dwarfism.","authors":"Qiwen Li,Shuang Jiang,Kexin Lei,Hui Han,Yaqian Chen,Weimin Lin,Qiuchan Xiong,Xingying Qi,Xinyan Gan,Rui Sheng,Yuan Wang,Yarong Zhang,Jieyi Ma,Tao Li,Shuibin Lin,Chenchen Zhou,Demeng Chen,Quan Yuan","doi":"10.1172/jci177220","DOIUrl":"https://doi.org/10.1172/jci177220","url":null,"abstract":"Translation of mRNA to protein is tightly regulated by tRNAs, which are subject to various chemical modifications that maintain the structure, stability and function. Deficiency of tRNA N7-methylguanosine (m7G) modification in patients causes a type of primordial dwarfism, but the underlying mechanism remains unknown. Here we report the loss of m7G rewires cellular metabolism, leading to the pathogenesis of primordial dwarfism. Conditional deletion of the catalytic enzyme Mettl1 or missense mutation of the scaffold protein Wdr4 severely impaired endochondral bone formation and bone mass accrual. Mechanistically, Mettl1 knockout decreased abundance of m7G-modified tRNAs and inhibited translation of mRNAs relating to cytoskeleton and Rho GTPase signaling. Meanwhile, Mettl1 knockout enhanced cellular energy metabolism despite of incompetent proliferation and osteogenic commitment. Further exploration revealed that impaired Rho GTPase signaling upregulated branched-chain amino acid transaminase 1 (BCAT1) level that rewired cell metabolism and restricted intracellular α-ketoglutarate (αKG). Supplementation of αKG ameliorated the skeletal defect of Mettl1-deficient mice. In addition to the selective translation of metabolism-related mRNAs, we further revealed that Mettl1 knockout globally regulated translation via integrated stress response (ISR) and mammalian target of rapamycin complex 1 (mTORC1) signaling. Restoring translation either by targeting ISR or mTORC1 aggravated bone defects of Mettl1-deficient mice. Overall, our study unveils a critical role of m7G tRNA modification in bone development by regulating cellular metabolism, and indicates that suspension of translation initiation as quality control mechanism in response to tRNA dysregulation.","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142171098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信