Frontiers in insect science最新文献

筛选
英文 中文
Pesticidal plant extract effect against major lepidopteran insect pests and their natural enemies in rice Oryza sativa L. 植物提取物对水稻鳞翅目主要害虫及其天敌的杀虫效果。
IF 2.4
Frontiers in insect science Pub Date : 2025-01-07 eCollection Date: 2024-01-01 DOI: 10.3389/finsc.2024.1500542
Atanu Seni, Rini Pal, Sanjukta Mohapatra, Dipankar Mandal, Sushil Kumar Bansude, Pinki Seth, Sarita Barla, Jubuli Sahu
{"title":"Pesticidal plant extract effect against major lepidopteran insect pests and their natural enemies in rice <i>Oryza sativa</i> L.","authors":"Atanu Seni, Rini Pal, Sanjukta Mohapatra, Dipankar Mandal, Sushil Kumar Bansude, Pinki Seth, Sarita Barla, Jubuli Sahu","doi":"10.3389/finsc.2024.1500542","DOIUrl":"10.3389/finsc.2024.1500542","url":null,"abstract":"<p><p>Extracts of plants have been used to manage various insect pests, but little information is available about how effective they are in reducing crop damage or how they affect crop yield and beneficial insects in rice. Extracts from <i>Azadirachta indica</i> leaves, <i>Lantana camara</i> leaves, <i>Nerium oleander</i> leaves, <i>Aegle marmelos</i> leaves, <i>Allium sativum</i> cloves, and <i>Citrus limon</i> fruits, known to have insecticidal properties, were compared with two checks, viz., Azadirachtin 1% EC and standard insecticide Acephate 95 SG, for their efficacy against yellow stem borer (YSB), <i>Scirpophaga incertulas</i> (Walk.), and rice leaf folder <i>Cnaphalocrocis medinalis</i> (Guenee) and natural enemies in cultivated rice in Sambalpur, Odisha, India. Untreated rice plants served as control. An adjuvant, Tween 20 at 1%, was added with all the botanical extracts except the commercial formulation. Plant damage, insect population numbers, and yield were monitored during two consecutive wet seasons from 2022 to 2023. Mean rice yield was significantly higher in the <i>A. indica</i> and Acephate 95 SG treatments, i.e., 4.68 t/ha and 4.66 t/ha, respectively, compared to the control (2.27 t/ha) and were significantly at par with each other. The <i>L. camara</i> and <i>A. indica</i> treatments were effective against both the major lepidopteran rice insect pests. The highest cost-benefit ratio of (1:4.65) was obtained from the Acephate treatment and was closely followed by the <i>A. indica</i> treatment (1:3.74). All the studied botanicals had less impact on natural enemies than synthetic chemicals. Among these botanicals, the maximum mean population of predators (like spiders and carabid beetles) and parasitoids (like <i>Tetrastichus schoenobii</i>, <i>Telenomus dignus</i>, and <i>Trichogramma japonicum</i>) were observed in the <i>A. indica</i> and <i>A. marmelos</i> treatments. Although all the studied botanicals were effective against both the major insect pests in rice, the <i>A. indica</i>, <i>A. marmelos</i>, <i>A. sativum</i>, and <i>L. camara</i> treatments showed the most promising against rice insect pests, so they may be incorporated into integrated pest management of rice.</p>","PeriodicalId":517424,"journal":{"name":"Frontiers in insect science","volume":"4 ","pages":"1500542"},"PeriodicalIF":2.4,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11745943/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143019708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uncharted territory: the arrival of Psychoda albipennis (Zetterstedt, 1850) (Diptera: Psychodidae) in Maritime Antarctica. 未知领域:Psychoda albipennis (Zetterstedt, 1850) (Diptera: Psychodidae) 来到南极洲海洋。
IF 2.4
Frontiers in insect science Pub Date : 2024-12-17 eCollection Date: 2024-01-01 DOI: 10.3389/finsc.2024.1481444
Jordan Hernandez-Martelo, Tamara Contador, Sanghee Kim, Carla Salina, Claudia S Maturana, Manuel Suazo, Peter Convey, Hugo A Benítez
{"title":"Uncharted territory: the arrival of <i>Psychoda albipennis</i> (Zetterstedt, 1850) (Diptera: Psychodidae) in Maritime Antarctica.","authors":"Jordan Hernandez-Martelo, Tamara Contador, Sanghee Kim, Carla Salina, Claudia S Maturana, Manuel Suazo, Peter Convey, Hugo A Benítez","doi":"10.3389/finsc.2024.1481444","DOIUrl":"10.3389/finsc.2024.1481444","url":null,"abstract":"<p><p>Despite increasing awareness of the threats they pose, exotic species continue to arrive in Antarctica with anthropogenic assistance, some of which inevitably have the potential to become aggressively invasive. Here, we provide the first report of the globally cosmopolitan species <i>Psychoda albipennis</i> (Diptera, Psychodidae; commonly known as moth flies) in Antarctica during the austral summer of 2021/2022, with the identification confirmed using traditional taxonomic and molecular approaches. The species was present in very large numbers and, although predominantly associated with the drainage and wastewater systems of Antarctic national operator stations in synanthropic situations, it was also present in surrounding natural habitats. While it is unclear if <i>P. albipennis</i> is capable of long-distance dispersal, adult psychodid flies are known to travel more than 90 m from their emergence sites, and up to 1.5 km with wind assistance. Thus, once established in the natural environment of King George Island there appears to be a high risk of the species rapidly becoming invasive. The introduction of non-native species such as <i>P. albipennis</i> can be a significant driver of future biodiversity change and loss, and seriously impact ecosystem health. In vulnerable low diversity ecosystems, such as in the terrestrial environments of Antarctica, non-native species can lead to step changes in ecological functions and interactions, displace native species and, potentially, lead to the extinction of native biota.</p>","PeriodicalId":517424,"journal":{"name":"Frontiers in insect science","volume":"4 ","pages":"1481444"},"PeriodicalIF":2.4,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11685106/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142916365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ecological interactions, host plant defenses, and control strategies in managing soybean looper, Chrysodeixis includens (Lepidoptera: Noctuidae). 大豆黄蛉的生态相互作用、寄主植物防御及防治策略
IF 2.4
Frontiers in insect science Pub Date : 2024-12-12 eCollection Date: 2024-01-01 DOI: 10.3389/finsc.2024.1480940
Rahul Debnath, Justin George, Manish Gautam, Insha Shafi, Rupesh Kariyat, Gadi V P Reddy
{"title":"Ecological interactions, host plant defenses, and control strategies in managing soybean looper, <i>Chrysodeixis includens</i> (Lepidoptera: Noctuidae).","authors":"Rahul Debnath, Justin George, Manish Gautam, Insha Shafi, Rupesh Kariyat, Gadi V P Reddy","doi":"10.3389/finsc.2024.1480940","DOIUrl":"10.3389/finsc.2024.1480940","url":null,"abstract":"<p><p>Soybean looper (SBL), <i>Chrysodeixis includens</i> (Walker 1858) (Lepidoptera: Noctuidae), is one of the most damaging insect pests of soybean, <i>Glycine max</i> (L.) Merr., in the mid-south region of the United States, and causes significant economic losses to cotton, sunflower, tomato, and tobacco crops in the United States, Brazil, and Argentina. Soybean production in the southern region accounted for 15.5% of the total production in the United States, and yield losses due to invertebrate pests were 5.8%, or 1.09 million metric ton, in 2022. As insecticide resistance of SBL continues to rise, the lack of alternate control strategies is a serious concern. Numerous studies have been reported on pest status, distribution, semiochemical-based attractant blends, pesticides and resistance mechanisms, host-plant resistance mechanisms, and molecular tools for controlling this pest in soybeans and other crops. However, there is no comprehensive review that summarizes and discusses these research on SBL and soybeans. The current management strategies for SBL remain heavily reliant on chemical insecticides and transgenic crops. In contrast, integrated pest management (IPM) strategies are needed to control the pest in an effective and environmentally friendly way. This review examines and synthesizes the literature on SBL as a significant pest of soybeans and other important crops, highlighting recent progress in ecological interactions, host plant defenses, and control strategies and identifying information gaps, thereby suggesting avenues for further research on this pest.</p>","PeriodicalId":517424,"journal":{"name":"Frontiers in insect science","volume":"4 ","pages":"1480940"},"PeriodicalIF":2.4,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11669695/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142901347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The 'genetic zipper' method offers a cost-effective solution for aphid control. “基因拉链”方法为控制蚜虫提供了一种经济有效的解决方案。
IF 2.4
Frontiers in insect science Pub Date : 2024-12-11 eCollection Date: 2024-01-01 DOI: 10.3389/finsc.2024.1467221
Vol V Oberemok, Yelizaveta V Puzanova, Nikita V Gal'chinsky
{"title":"The 'genetic zipper' method offers a cost-effective solution for aphid control.","authors":"Vol V Oberemok, Yelizaveta V Puzanova, Nikita V Gal'chinsky","doi":"10.3389/finsc.2024.1467221","DOIUrl":"10.3389/finsc.2024.1467221","url":null,"abstract":"<p><p>Twenty years ago, it was difficult to imagine the use of nucleic acids in plant protection as insecticides, but today it is a reality. New technologies often work inefficiently and are very expensive; however, qualitative changes occur during their development, making them more accessible and work effectively. Invented in 2008, contact oligonucleotide insecticides (olinscides, or DNA insecticides) based on the CUAD (contact unmodified antisense DNA) platform have been substantially improved and rethought. The main paradigm shift was demonstrating that unmodified antisense DNA can act as a contact insecticide. Key breakthroughs included identifying convenient target genes (rRNA genes), mechanism of action (DNA containment), and discovering insect pests (sternorrhynchans) with high susceptibility to olinscides. Today, the CUAD platform possesses impressive characteristics: low carbon footprint, high safety for non-target organisms, rapid biodegradability, and avoidance of target-site resistance. This next-generation class of insecticides creates opportunities for developing products tailored for specific insect pest populations. The 'genetic zipper' method, based on CUAD biotechnology, integrates molecular genetics, bioinformatics, and <i>in vitro</i> nucleic acid synthesis. It serves as a simple and flexible tool for DNA-programmable plant protection using unmodified antisense oligonucleotides targeting pest rRNAs. Aphids, key pests of important agricultural crops, can be effectively controlled by oligonucleotide insecticides at an affordable price, ensuring efficient control with minimal environmental risks. In this article, a low-dose concentration (0.1 ng/µL; 20 mg per hectare in 200 L of water) of the 11 nt long oligonucleotide insecticide Schip-11 shows effectiveness against the aphid <i>Schizolachnus pineti</i>, causing mortality rate of 76.06 ± 7.68 on the 12<sup>th</sup> day (p<0.05). At a consumption rate of 200 L per hectare, the cost of the required oligonucleotide insecticide is about 0.5 USD/ha using liquid-phase DNA synthesis making them competitive in the market and very affordable for lab investigations. We also show that non-canonical base pairing G<sub>olinscide</sub>: U<sub>rRNA</sub> is well tolerated in aphids. Thus, non-canonical base-pairing should be considered not to harm non-target organisms and can be easily solved during the design of oligonucleotide insecticides. The 'genetic zipper' method, based on CUAD biotechnology, helps quickly create a plethora of efficient oligonucleotide pesticides against aphids and other pests. Already today, according to our estimations, the 'genetic zipper' is potentially capable of effectively controlling 10-15% of all insect pests using a simple and flexible algorithm.</p>","PeriodicalId":517424,"journal":{"name":"Frontiers in insect science","volume":"4 ","pages":"1467221"},"PeriodicalIF":2.4,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11670321/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142901351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evidence of horizontal transmission of Wolbachia wCcep in rice moths parasitized by Trichogramma chilonis and its persistence across generations. 沃尔巴克氏体wCcep在被赤眼蜂寄生的稻蛾中水平传播的证据及其跨代持久性。
IF 2.4
Frontiers in insect science Pub Date : 2024-12-09 eCollection Date: 2024-01-01 DOI: 10.3389/finsc.2024.1519986
C T Lai, Y T Hsiao, Li-Hsin Wu
{"title":"Evidence of horizontal transmission of <i>Wolbachia w</i>Ccep in rice moths parasitized by <i>Trichogramma chilonis</i> and its persistence across generations.","authors":"C T Lai, Y T Hsiao, Li-Hsin Wu","doi":"10.3389/finsc.2024.1519986","DOIUrl":"10.3389/finsc.2024.1519986","url":null,"abstract":"<p><p>The horizontal transmission of endosymbionts between hosts and parasitoids plays a crucial role in biological control, yet its mechanisms remain poorly understood. This study investigates the dynamics of horizontal transfer of <i>Wolbachia</i> (<i>w</i>Ccep) from the rice moth, <i>Corcyra cephalonica</i>, to its parasitoid, <i>Trichogramma chilonis</i>. Through PCR detection and phylogenetic analysis, we demonstrated the presence of identical <i>w</i>Ccep strains in both host and parasitoid populations, providing evidence for natural horizontal transmission. To investigate thoroughly, <i>Wolbachia</i>-free colonies were acquired through tetracycline treatment, and the initial density of <i>w</i>Ccep in host eggs significantly influences transmission efficiency. High-density <i>w</i>Ccep infections led to rapid transmission, with F1 parasitoid titers increasing by as much as 100-fold, while low-density infections exhibited more gradual increases. Additionally, without continuous exposure to infected hosts, <i>w</i>Ccep density in <i>T. chilonis</i> diminished over generations. These findings enhance our understanding of <i>Wolbachia</i>'s transfer dynamics and have important implications for developing effective and sustainable biological control strategies using parasitoid wasps, particularly in managing <i>Wolbachia</i>-related pest populations in agricultural systems.</p>","PeriodicalId":517424,"journal":{"name":"Frontiers in insect science","volume":"4 ","pages":"1519986"},"PeriodicalIF":2.4,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11663936/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142884018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crop, semi-natural, and water features of the cotton agroecosystem as indicators of risk of infestation of two plant bug (Hemiptera: Miridae) pests. 棉花农业生态系统的作物、半天然和水分特征作为两种植物害虫(半翅目:盲蝽科)侵害风险的指标。
IF 2.4
Frontiers in insect science Pub Date : 2024-11-25 eCollection Date: 2024-01-01 DOI: 10.3389/finsc.2024.1496184
Michael J Brewer
{"title":"Crop, semi-natural, and water features of the cotton agroecosystem as indicators of risk of infestation of two plant bug (Hemiptera: Miridae) pests.","authors":"Michael J Brewer","doi":"10.3389/finsc.2024.1496184","DOIUrl":"10.3389/finsc.2024.1496184","url":null,"abstract":"<p><strong>Introduction: </strong>This study considers concepts and tools of landscape ecology and geographic information systems (GIS) to prioritize insect monitoring in large-scale crops, using the cotton agroecosystem of the Texas Gulf Coast and two plant bug species (<i>Creontiades signatus</i> Distant and <i>Pseudatomoscelis seriatus</i> (Reuter) [Hemiptera: Miridae]) as a case study. The two species differed in host plants and time span as cotton pests.</p><p><strong>Methods: </strong><i>C. signatus</i> and <i>P. seriatus</i> abundance in early growth of cotton were regressed on landscape metrics. Comparisons of three approaches to select landscape variables in stepwise multiple regressions were made across spatial scales and two weeks of insect data extracted from monitoring of 21 cotton fields, years 2010 through 2013.</p><p><strong>Results and discussion: </strong>The spatial variation of plant bug abundance and the landscape features were substantial, aiding the regression approach. For full stepwise regression models using 18 landscape variables, regression model fit using <i>C. signatus</i> data was modestly better in week one of sampling when <i>C. signatus</i> adults and young nymphs were detected (<i>R</i> <sup>2</sup> range of 0.56 to 0.82), as compared with model fit at week two (<i>R</i> <sup>2</sup> range of 0.49 to 0.77). The smallest scale (2.5 km radius) models had the greatest number of variables selected and highest <i>R</i> <sup>2</sup>, while two broader scales (5 and 10 km) and truncating the models to three variables produced a narrower range of <i>R</i> <sup>2</sup>s (0.49 to 0.62) and more consistent entry of variables. Wetland composition had a consistent positive association with <i>C. signatus</i> abundance, supporting its association with seepweeds which are common in coastal wetlands. When selected, the composition of cotton and grassland/shrubland/pasture also had a positive association with <i>C. signatus</i> abundance. Aggregation metrics were also relevant, but composition metrics in the models were arguably more easily utilized in prioritizing insect monitoring. In contrast, there were few significant regressions using <i>P. seriatus</i> data, possibly due to the widespread distribution of its weedy host plants and lower abundance. Overall, selected landscape features served as indicators of <i>C. signatus</i> infestation potential in cotton particularly grown near coastal wetlands, but landscape features were not useful for <i>P. seriatus</i> infestation potential in cotton.</p>","PeriodicalId":517424,"journal":{"name":"Frontiers in insect science","volume":"4 ","pages":"1496184"},"PeriodicalIF":2.4,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11625742/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142804097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A DNA-based approach to infer species diversity of larvae and adults from the white grub genus Phyllophaga (Coleoptera: Scarabeidae). 以 DNA 为基础的方法推断白蛴螬属 Phyllophaga(鞘翅目:疤翅科)幼虫和成虫的物种多样性。
IF 2.4
Frontiers in insect science Pub Date : 2024-11-07 eCollection Date: 2024-01-01 DOI: 10.3389/finsc.2024.1465794
Ariel W Guzmán-Franco, Maribel Rivero-Borja, Antonio Marín-Jarillo, Fernando Tamayo-Mejía, Nayra Guzmán-Santillán, Tania Guzmán-Santillán
{"title":"A DNA-based approach to infer species diversity of larvae and adults from the white grub genus <i>Phyllophaga</i> (Coleoptera: Scarabeidae).","authors":"Ariel W Guzmán-Franco, Maribel Rivero-Borja, Antonio Marín-Jarillo, Fernando Tamayo-Mejía, Nayra Guzmán-Santillán, Tania Guzmán-Santillán","doi":"10.3389/finsc.2024.1465794","DOIUrl":"10.3389/finsc.2024.1465794","url":null,"abstract":"<p><p>Scarabaeoidea is a diverse and widely distributed insect group; many are agricultural pests including species within the genus <i>Phyllophaga</i>. Species diversity studies in this taxonomic group are done mainly using morphological identification. However, despite existing taxonomic keys for adults and larvae, identification may be difficult due to their complex morphology. Molecular taxonomy can increase the value and accuracy of morphological species identification of larvae and adults. To test this, larvae collected from soil close to maize plants were identified using molecular taxonomy, and compared with adults captured using light traps. The larvae (2021) and adults (2022) were sampled on maize at the same locations in central Mexico. Molecular identification was achieved using three regions within the Cytochrome oxidase gene (<i>cox</i>), two in the Cytochrome c oxidase subunit 1 (cox1), Cytochrome b (CytB) and 28S rDNA. <i>Cox</i> gene information was more useful than nuclear information (28S). Combined morphological and molecular taxonomy of adults distinguished between seven <i>Phyllophaga</i> species. Although two closely related species, <i>P. polyphyla</i> and <i>P. ravida</i>, were distinguished using <i>cox</i> gene information, greater resolution was obtained using CytB. All analyses identified cryptic species within <i>P. vetula</i>. Species found amongst sampled adults were similar to those found amongst larvae. However, the number of species was greater in adults than in larvae at the same locations. Larval information showed <i>Phyllophaga</i> community structure changed over time. Our findings will contribute to a better understanding of <i>Phyllophaga's</i> ecology in maize.</p>","PeriodicalId":517424,"journal":{"name":"Frontiers in insect science","volume":"4 ","pages":"1465794"},"PeriodicalIF":2.4,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579710/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142690332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Oriental hornet, Vespa orientalis Linnaeus, 1771 (Hymenoptera, Vespidae): diagnosis, potential distribution, and geometric morphometrics across its natural distribution range. 东方大黄蜂(Vespa orientalis Linnaeus,1771 年)(膜翅目,蝰科):其自然分布区的诊断、潜在分布和几何形态计量学。
IF 2.4
Frontiers in insect science Pub Date : 2024-10-29 eCollection Date: 2024-01-01 DOI: 10.3389/finsc.2024.1384598
Allan H Smith-Pardo, Mariano Altamiranda-Saavedra, P David Polly
{"title":"The Oriental hornet, <i>Vespa orientalis</i> Linnaeus, 1771 (Hymenoptera, Vespidae): diagnosis, potential distribution, and geometric morphometrics across its natural distribution range.","authors":"Allan H Smith-Pardo, Mariano Altamiranda-Saavedra, P David Polly","doi":"10.3389/finsc.2024.1384598","DOIUrl":"https://doi.org/10.3389/finsc.2024.1384598","url":null,"abstract":"<p><p>We present a short review of the biology, diagnostic characteristics, and invasiveness of the Oriental hornet, <i>Vespa orientalis</i>. We also performed an analysis of the shape of the forewings (geometric morphometrics) of different geographic groups along their native distribution and their potential geographical distribution using the MaxEnt entropy modeling. Our results show a wide potential expansion range of the species, including an increase in environmentally suitable areas in Europe, Asia, and Africa but more especially the Western Hemisphere, where the species was recently introduced. The geometric morphometric analysis of the forewings shows that there are three different morphogroups: one distributed along the Mediterranean coast of Europe and the Middle East (MEDI), another along the Arabian Peninsula and Western Asia but excluding the Mediterranean coast (MEAS), and one more in northern Africa north of the Sahara and south of the Mediterranean coast (AFRI), all of which show differences in their potential distribution as a result of the pressure from the different environments and which will also determine the capacity of the different morphogroups to successfully invade new habitats.</p>","PeriodicalId":517424,"journal":{"name":"Frontiers in insect science","volume":"4 ","pages":"1384598"},"PeriodicalIF":2.4,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555395/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142635194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatial distribution and fixed-precision sequential sampling plans for Popillia japonica (Coleoptera: Scarabaeidae) adults in primocane raspberry: influence of foliar insecticides. 鞘翅目:猩红夜蛾科)成虫的空间分布和固定精度顺序采样计划:叶面杀虫剂的影响。
IF 2.4
Frontiers in insect science Pub Date : 2024-10-02 eCollection Date: 2024-01-01 DOI: 10.3389/finsc.2024.1465829
Adam G Toninato, Eric C Burkness, William D Hutchison
{"title":"Spatial distribution and fixed-precision sequential sampling plans for <i>Popillia japonica</i> (Coleoptera: Scarabaeidae) adults in primocane raspberry: influence of foliar insecticides.","authors":"Adam G Toninato, Eric C Burkness, William D Hutchison","doi":"10.3389/finsc.2024.1465829","DOIUrl":"https://doi.org/10.3389/finsc.2024.1465829","url":null,"abstract":"<p><p>The Japanese beetle, <i>Popillia japonica</i> Newman (Coleoptera: Scarabaeidae), an invasive species from northern Japan, was first detected in Minnesota in 1968. According to fruit growers and the Minnesota Department of Agriculture, population size and feeding damage has been an increasing concern since 2010. Based on trap-catch data, populations have recently exceeded 4,000 beetles/trap/week during July-August near raspberry fields, and can increase by an order of magnitude within 7-10 days. The primary goals of this study were to assess the spatial distribution of <i>P. japonica</i> adults in raspberry, and to develop and validate a practical fixed-precision sequential sampling plan for grower use. Taylor's Power Law (TPL) regression was used to characterize the beetle's spatial pattern in research plots and commercial fields, either with or without insecticide applications. We then used Green's plan to develop an enumerative sequential sampling plan to estimate <i>P. japonica</i> density in primocane raspberry. Beetle population data were collected at two locations in southern Minnesota, including the Rosemount Research and Outreach Center, and a commercial field near Forest Lake. The TPL results, via slope comparisons, indicated no significant differences in <i>P. japonica</i> spatial pattern between insecticide treated plots versus untreated plots, or among 4 different insecticides (P>0.05). Utilizing all spatial pattern data, we characterized the distribution of <i>P. japonica</i> beetles to be highly aggregated in raspberry, with TPL slopes ranging from b = 1.38 to 1.55; all slopes were found to be >1.0. Although the slopes were not significantly different, we accounted for variability in spatial pattern by using 33 independent data sets, and the Resampling for Validation of Sampling Plans (RVSP) model to validate a sampling plan with a final average precision level of 0.25 (SEM/mean), recommended for integrated pest management (IPM) purposes. The final sampling plan required an average sample number of only 15, 1-m-row samples, while providing high relative net precision (RNP), and thus a cost-effective, efficient sample plan for growers.</p>","PeriodicalId":517424,"journal":{"name":"Frontiers in insect science","volume":"4 ","pages":"1465829"},"PeriodicalIF":2.4,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11479985/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142485267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial: Rising stars in insect physiology. 社论:昆虫生理学的后起之秀
IF 2.4
Frontiers in insect science Pub Date : 2024-09-26 eCollection Date: 2024-01-01 DOI: 10.3389/finsc.2024.1483760
Peter M Piermarini, Nicholas M Teets
{"title":"Editorial: Rising stars in insect physiology.","authors":"Peter M Piermarini, Nicholas M Teets","doi":"10.3389/finsc.2024.1483760","DOIUrl":"https://doi.org/10.3389/finsc.2024.1483760","url":null,"abstract":"","PeriodicalId":517424,"journal":{"name":"Frontiers in insect science","volume":"4 ","pages":"1483760"},"PeriodicalIF":2.4,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11465575/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142402605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信