{"title":"Tailoring porous structure in non-ionic polymer membranes using multiple templates for low-cost iron-lead single-flow batteries","authors":"Jiaxuan Zhang, Amaia Lejarazu-Larrañaga, Fan Yang, Weilong Jiang, Mingruo Hu, Sheng Sui, Haolong Li, Fengjing Jiang","doi":"10.20517/energymater.2023.113","DOIUrl":"https://doi.org/10.20517/energymater.2023.113","url":null,"abstract":"Porous ion-selective membranes are promising alternatives for the expensive perfluorosulfonic acid membranes in redox flow batteries. In this work, novel non-ionic porous polyvinylidene fluoride-hexafluoro propylene membranes are designed for iron-lead single-flow batteries. The membranes are prepared using a multiple template approach, involving simultaneously using polyethylene glycol and dibutyl phthalate (DBP) as pore-forming templates. Their porous structure is finely tuned by adjusting the ratio of the two templates. As a result, dual-porous membranes bearing both macro and micropores are obtained. The H3520 membrane with modified porous structure attains a high proton conductivity of 43.5 mS·cm-1 and a relatively low ferric ion diffusion constant (8.61 × 10-8 cm2·min-1) and demonstrates the best balance between these performance-determining parameters (selectivity 5.04 × 105 S·min·cm-3, higher than that of the N115 membrane). Besides, performance tests of the iron-lead single-flow single cells equipped with the dual-porous membranes show a high energy efficiency, exceeding 87.2% at its rated current density, and outstanding cycling stability over 200 charge-discharge cycles. Altogether, the mixed template method presents a promising strategy to prepare high-performance and low-cost non-ionic membranes for redox flow batteries.","PeriodicalId":516139,"journal":{"name":"Energy Materials","volume":"112 43","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140988045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Energy MaterialsPub Date : 2024-05-07DOI: 10.20517/energymater.2023.96
Tanveer Farid, Yiyun Wang, A. Razaq, Saghir Hussain, Weihua Tang
{"title":"Layer-by-layer assembling redox wood electrodes for efficient energy storage","authors":"Tanveer Farid, Yiyun Wang, A. Razaq, Saghir Hussain, Weihua Tang","doi":"10.20517/energymater.2023.96","DOIUrl":"https://doi.org/10.20517/energymater.2023.96","url":null,"abstract":"The exploration of redox-active organic materials and low tortuous thick-electrodes is attractive for energy storage. The in-situ valorized lignin on raw wood surface accompanied by layer-by-layer deposition of electro-active materials endow such spatially distributed wood electrodes with high specific capacitance. Here, we report a layer-by-layer assembled ca.1.5 mm-thick redox wood hybrid electrode with 20 mg cm-2 electro-active mass loading for efficient energy storage. The in-situ modified surface lignin in treated wood (TrW) holds promise as redox-active material with enriched nanoporosity, carbonyl functionalities, and multi-phase ionic transport structure. The carbon nanotubes (CNTs) networking with in-situ polymerized polypyrrole (PPy) nanorods three-dimensionally in the lumen of TrW afford a wool-like, highly porous nanostructure. Such a hierarchical structured PPy@CNTs@TrW electrode offers a high areal capacitance of 1.46 F cm-2 with an extraordinary energy density of 0.983 mWh cm-3 (3.68 Wh kg-1) and power density of 5.4 mW cm-3 (20.25 W kg-1). Here, the valorized surface lignin contributes contributes to electrochemical energy storage accompanied by spatially distributed PPy@CNTs in low tortuous electrodes. The electrode offers extremely low electrochemical impedance of 0.61 Ω electrode resistance and 1.57 Ω electrolyte resistance. The hybrid wood electrode showcases even higher conductivity and energy/power density than thin carbonized wood and other state-of-the-art thin electrodes made of highly conductive three-dimensional networks. This work highlights the potential of in-situ valorized lignin in developing high-performance eco-friendly thick-electrodes for electrochemical energy storage applications.","PeriodicalId":516139,"journal":{"name":"Energy Materials","volume":"82 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141002179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Energy MaterialsPub Date : 2024-05-06DOI: 10.20517/energymater.2024.12
Qi Li, Kovan Khasraw Abdalla, Jiawei Xiong, Zhihang Song, Yueyang Wang, Yajun Zhao, Mengyao Liu, Yanchen Fan, Yi Zhao, Xiaoming Sun
{"title":"High-energy and durable aqueous Zn batteries enabled by multi-electron transfer reactions","authors":"Qi Li, Kovan Khasraw Abdalla, Jiawei Xiong, Zhihang Song, Yueyang Wang, Yajun Zhao, Mengyao Liu, Yanchen Fan, Yi Zhao, Xiaoming Sun","doi":"10.20517/energymater.2024.12","DOIUrl":"https://doi.org/10.20517/energymater.2024.12","url":null,"abstract":"Aqueous Zn batteries (AZBs) have emerged as a highly promising technology for large-scale energy storage systems due to their eco-friendly, safe, and cost-effective characteristics. The current requirements for high-energy AZBs attract extensive attention to reasonably designed cathode materials with multi-electron transfer mechanisms. This review systematically overviews the development and challenges of typical cathode hosts capable of multiple electron transfer reactions for high-performance Zn batteries. Moreover, we also summarize how to trigger the multi-electron transfer chemistry of cathodes, including transition metal oxides, halogens, and organics, to further boost the energy storage capability of AZBs. Finally, perspectives on critical issues and future directions of the multi-electron transfer battery systems offer novel insights for advanced Zn batteries.","PeriodicalId":516139,"journal":{"name":"Energy Materials","volume":"139 3‐4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141007107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Energy MaterialsPub Date : 2024-04-22DOI: 10.20517/energymater.2023.117
Zhixiu Lu, Xiuping Yin, Yelin Ji, Caixia Li, Ruixiao Wang, Shenqi Li, Tao Yuan, Yufeng Zhao
{"title":"Modulating the graphitic domains of hard carbons via tuning resin crosslinking degree to achieve high rate and stable sodium storage","authors":"Zhixiu Lu, Xiuping Yin, Yelin Ji, Caixia Li, Ruixiao Wang, Shenqi Li, Tao Yuan, Yufeng Zhao","doi":"10.20517/energymater.2023.117","DOIUrl":"https://doi.org/10.20517/energymater.2023.117","url":null,"abstract":"Sodium-ion batteries (SIBs) are regarded as an outstanding alternative to lithium-ion batteries (LIBs) due to abundant sodium sources and their similar chemistry. As a most promising anode of SIBs, hard carbons (HCs) receive extensive attention because of their low potential and low cost, but their rational design for commercial SIBs is restricted by their variable and complicated microstructure, which is analogous to that of graphite in LIBs. Herein, a series of controllable HC materials derived from 3-aminophenol formaldehyde resin (AFR) were designed and fabricated. We discover that the optimized HC features expanded graphite regions, highly developed nanopores, and reduced defect content, contributing to the enhanced Na+ storage. This optimization is achieved by adjusting the resin crosslinking degree of the precursor. Specifically, a resin precursor with a higher crosslinking degree can produce HC with a larger interlayer distance, relatively higher crystallinity, and a lower specific surface area. Encouragingly, the as-optimized AFR-HC electrode manifests superior electrochemical performance in the aspect of high capacity (383 mAh·g-1 at 0.05 A·g-1), better rate capability (140 mAh·g-1 at 20 A·g-1), and high initial coulombic efficiency (82%) than other contrast samples. Moreover, the as-constructed full cell coupled with a Na3V2(PO4)3 cathode shows an energy density of 250 Wh·kg-1. Together with the simple synthesis, cost-efficiency of the precursors and superior electrochemical performance, AFR-HCs are promising for the commercial application.","PeriodicalId":516139,"journal":{"name":"Energy Materials","volume":"26 26","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140673037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Energy MaterialsPub Date : 2024-04-22DOI: 10.20517/energymater.2023.111
Oscar J. Allen, Jian Kang, Shangshu Qian, J. Hinsch, Lei Zhang, Yun Wang
{"title":"A theoretical review of passivation technologies in perovskite solar cells","authors":"Oscar J. Allen, Jian Kang, Shangshu Qian, J. Hinsch, Lei Zhang, Yun Wang","doi":"10.20517/energymater.2023.111","DOIUrl":"https://doi.org/10.20517/energymater.2023.111","url":null,"abstract":"Perovskite solar cells have demonstrated remarkable progress in recent years. However, their widespread commercialization faces challenges arising from defects and environmental vulnerabilities, leading to limitations in energy conversion efficiency and device stability. To overcome these hurdles, passivation technologies have emerged as a promising avenue. These passivators are strategically applied at the interface between perovskite absorbers and charge transport layers to mitigate the adverse effects of defects and environmental factors. While prior reviews have predominantly focused on experimental observations, a comprehensive theoretical understanding of the passivators has been lacking. This review focuses on recent advancements in first-principles density functional theory studies that delve into the fundamental properties of passivators and their intricate interactions with perovskite materials and charge transport layers. By exploring the atomic-level roles of passivators, this review elucidates their impact on critical parameters such as open circuit voltage (Voc ), short circuit current density (Jsc ), fill factor, and the overall stability of perovskite solar cells. The synthesis of theoretical insights from these studies can serve as guidelines for the molecular design of passivators with the ultimate objective of advancing the commercialization of high-performance perovskite solar cells.","PeriodicalId":516139,"journal":{"name":"Energy Materials","volume":"19 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140672284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Energy MaterialsPub Date : 2024-04-18DOI: 10.20517/energymater.2023.119
Chi Luo, Haoyun Lei, Yiyang Xiao, Xiaoxin Nie, Yuhang Li, Qian Wang, Wenlong Cai, Chunlong Dai, Meng Yao, Yun Zhang, Du Yuan
{"title":"Recent development in addressing challenges and implementing strategies for manganese dioxide cathodes in aqueous zinc ion batteries","authors":"Chi Luo, Haoyun Lei, Yiyang Xiao, Xiaoxin Nie, Yuhang Li, Qian Wang, Wenlong Cai, Chunlong Dai, Meng Yao, Yun Zhang, Du Yuan","doi":"10.20517/energymater.2023.119","DOIUrl":"https://doi.org/10.20517/energymater.2023.119","url":null,"abstract":"Safety issues of energy storage devices in daily life are receiving growing attention, together with resources and environmental concerns. Aqueous zinc ion batteries (AZIBs) have emerged as promising alternatives for extensive energy storage due to their ultra-high capacity, safety, and eco-friendliness. Manganese-based compounds are key to the functioning of AZIBs as the cathode materials thanks to their high operating voltage, substantial charge storage capacity, and eco-friendly characteristics. Despite these advantages, the development of high-performance Mn-based cathodes still faces the critical challenges of structural instability, manganese dissolution, and the relatively low conductivity. Primarily, the charge storage mechanism of manganese-based AZIBs is complex and subject to debate. In view of the above, this review focuses on the mostly investigated MnO2-based cathodes and comprehensively outlines the charge storage mechanisms of MnO2-based AZIBs. Current optimization strategies are systematically summarized and discussed. At last, the perspectives on elucidating advancing MnO2 cathodes are provided from the mechanistic, synthetic, and application-oriented aspects.","PeriodicalId":516139,"journal":{"name":"Energy Materials","volume":" 26","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140687895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Energy MaterialsPub Date : 2024-04-17DOI: 10.20517/energymater.2023.121
Zequan Zhao, Xia Cao, Ning Wang
{"title":"Beyond energy harvesting: a review on the critical role of MXene in triboelectric nanogenerator","authors":"Zequan Zhao, Xia Cao, Ning Wang","doi":"10.20517/energymater.2023.121","DOIUrl":"https://doi.org/10.20517/energymater.2023.121","url":null,"abstract":"In the field of advanced materials and energy harvesting, MXene has played a pivotal role in advancing the development of triboelectric nanogenerators (TENGs). This contribution is notable not only in terms of enhancing the performance of TENGs but also in expanding their application range. A comprehensive review of MXene materials is offered herein to delve into the significant impact of MXene on the growing efficiency of energy harvesting and widening application in areas ranging from energy harvesters to physiochemical sensors to self-powered intelligent systems. We begin with the fundamentals of MXene and TENGs, then highlight how MXene improves TENGs via its integration into the triboelectrification and electrode layers to increase the electronegativity, charge density, and introduce self-healing and stretchability. The discussion then extends to the modifications in MXene that boost the electrical output, stability, and collection efficiency of TENGs. Additionally, the review covers the diverse applications of MXene-based TENGs in extreme environments, respiratory monitoring, and multi-purpose devices, emphasizing its critical role in promoting TENGs to future self-powered intelligent systems.","PeriodicalId":516139,"journal":{"name":"Energy Materials","volume":"129 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140694301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Energy MaterialsPub Date : 2024-04-15DOI: 10.20517/energymater.2023.86
Youcheng Xu, Ziyi Wu, Ziling Zhang, Xin Li, Hong Lin
{"title":"Evolved photovoltaic performance of MAPbI3 and FAPbI3-based perovskite solar cells in low-temperatures","authors":"Youcheng Xu, Ziyi Wu, Ziling Zhang, Xin Li, Hong Lin","doi":"10.20517/energymater.2023.86","DOIUrl":"https://doi.org/10.20517/energymater.2023.86","url":null,"abstract":"Organic-inorganic hybrid perovskites have emerged as an up-and-coming contender for photovoltaic devices owing to their exceptional photovoltaic properties. However, current research predominantly concentrates on their performance under ambient conditions at room temperature. In this work, we delve into the novel territory by investigating MAPbI3-based and FAPbI3-based perovskite solar cells (PSCs) in the temperature range of 300 to 150 K. Remarkable efficiency enhancements of nearly 5% and 20% were obtained at 250 and 210 K, respectively. However, further decreasing the temperature impairs the photovoltaic performance. We propose an underlying mechanism influencing the performance change in perovskite devices at low temperatures by examining the temperature-dependent ultraviolet-visible and photoluminescence spectra results. At the beginning of the cooling process, from 300 to 250 K for MAPbI3 and from 300 to 210 K for FAPbI3, the performance enhancement stems primarily from the enhanced open-circuit voltage by the tuned band gap of the perovskite films. Further lowering the temperature would change the perovskite structure, impairing the performance of PSCs. FAPbI3-based PSCs show a better tolerance in low temperatures owing to the more stable perovskite crystal structure. The present findings offer valuable theoretical guidance for preparing outstanding PSCs for low-temperature applications.","PeriodicalId":516139,"journal":{"name":"Energy Materials","volume":"30 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140699669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Single-atomic-Ni electrocatalyst derived from phthalocyanine-modified MOF for convoying CO2 intelligent utilization","authors":"San‐Mei Wang, Xiaoshi Yuan, Shenghua Zhou, Xiaofang Li, Shu‐Guo Han, Wenlie Lin, Lirong Zheng, Dong‐Dong Ma, Qingxia Zhu","doi":"10.20517/energymater.2023.123","DOIUrl":"https://doi.org/10.20517/energymater.2023.123","url":null,"abstract":"Single-atomic-site catalysts have been demonstrated as promising candidates for electrochemical CO2 reduction reaction (eCO2RR). However, the universal construction strategies need to be further developed to synthesize the desired single-atomic-site catalysts with high eCO2RR activity for feasible CO2 utilization. Herein, a novel 2-methylimidazole-phthalocyanine-Ni (IM4NiPc) coordinatively modified ZIF-8 was rationally fabricated and applied to derive the single-atomic-Ni electrocatalyst (Ni-N-C-l), which is capable of delivering much improved activity for eCO2RR, compared to the pristine IM4NiPc immobilized onto ZIF-8-derived N-doped carbon surface, and is also comparable to the best reported catalysts. The satisfied Faradaic efficiency, current density and stability of CO2-to-CO electroconversion over Ni-N-C-l are shown to originate from the verified Ni-N4 configuration, particularly, reaching a CO Faradaic efficiency of 99% in a wide potential range. Moreover, based on the outstanding eCO2RR activity of Ni-N-C-l, we successfully realized the exemplary synthesis of amide polymer materials through CO-mediated electro/thermocatalytic cascade processes, demonstrating the feasibility of utilizing CO2 for material manufacturing. This finding is expected to provide useful insight on the precise design and rational synthesis of the novel single-atomic-site catalysts for future CO2 intelligent utilization.","PeriodicalId":516139,"journal":{"name":"Energy Materials","volume":"3 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140722071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Stable ultrathin lithium metal anode enabled by self-adapting electrochemical regulating strategy","authors":"Si-Yuan Zeng, Wen-Long Wang, Deyuan Li, Chunpeng Yang, Zijian Zheng","doi":"10.20517/energymater.2023.93","DOIUrl":"https://doi.org/10.20517/energymater.2023.93","url":null,"abstract":"Ultrathin lithium (Li) metal foils with controllable capacity could realize high-specific-energy batteries; however, the pulverization of Li metal foils due to its extreme volume change results in rapid active Li loss and capacity fading. Here, we report a strategy to stabilize ultrathin Li metal anode via in-situ transferring Li from ultrathin Li foil into a well-designed three-dimensional gradient host during a cycling process. A three-dimensional carbon fiber with gradient distribution of Ag nanoparticles is placed on the ultrathin Li foil in advance and acts as a Li reservoir, guiding Li deposition into its interior and thus alleviating the volume change of ultrathin Li foil anodes. Hence, a high reversibility of Li metal is achieved and Li pulverization is suppressed, which can be witnessed by a long cyclic life in the symmetric cells. The proposed method offers a versatile and facile approach for protecting ultrathin Li metal anodes, which will boost their commercial application process.","PeriodicalId":516139,"journal":{"name":"Energy Materials","volume":"30 22","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140732132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}