Qi Li, Kovan Khasraw Abdalla, Jiawei Xiong, Zhihang Song, Yueyang Wang, Yajun Zhao, Mengyao Liu, Yanchen Fan, Yi Zhao, Xiaoming Sun
{"title":"High-energy and durable aqueous Zn batteries enabled by multi-electron transfer reactions","authors":"Qi Li, Kovan Khasraw Abdalla, Jiawei Xiong, Zhihang Song, Yueyang Wang, Yajun Zhao, Mengyao Liu, Yanchen Fan, Yi Zhao, Xiaoming Sun","doi":"10.20517/energymater.2024.12","DOIUrl":null,"url":null,"abstract":"Aqueous Zn batteries (AZBs) have emerged as a highly promising technology for large-scale energy storage systems due to their eco-friendly, safe, and cost-effective characteristics. The current requirements for high-energy AZBs attract extensive attention to reasonably designed cathode materials with multi-electron transfer mechanisms. This review systematically overviews the development and challenges of typical cathode hosts capable of multiple electron transfer reactions for high-performance Zn batteries. Moreover, we also summarize how to trigger the multi-electron transfer chemistry of cathodes, including transition metal oxides, halogens, and organics, to further boost the energy storage capability of AZBs. Finally, perspectives on critical issues and future directions of the multi-electron transfer battery systems offer novel insights for advanced Zn batteries.","PeriodicalId":516139,"journal":{"name":"Energy Materials","volume":"139 3‐4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/energymater.2024.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Aqueous Zn batteries (AZBs) have emerged as a highly promising technology for large-scale energy storage systems due to their eco-friendly, safe, and cost-effective characteristics. The current requirements for high-energy AZBs attract extensive attention to reasonably designed cathode materials with multi-electron transfer mechanisms. This review systematically overviews the development and challenges of typical cathode hosts capable of multiple electron transfer reactions for high-performance Zn batteries. Moreover, we also summarize how to trigger the multi-electron transfer chemistry of cathodes, including transition metal oxides, halogens, and organics, to further boost the energy storage capability of AZBs. Finally, perspectives on critical issues and future directions of the multi-electron transfer battery systems offer novel insights for advanced Zn batteries.