{"title":"A unifying framework and a mathematical model for the Slab Stack Shuffling Problem","authors":"G. Bruno, M. Cavola, A. Diglio, C. Piccolo","doi":"10.5267/j.ijiec.2022.10.005","DOIUrl":"https://doi.org/10.5267/j.ijiec.2022.10.005","url":null,"abstract":"The Slab Stack Shuffling Problem (SSSP) consists of retrieving slabs, stored in stacks in a warehouse, to efficiently satisfy a processing order. The problem is relevant in the steel industry as the slab yard serves as a storage buffer between the continuous casting stage and the rolling mill. Notably, the SSSP also arises in cutting/assembly centres within the shipbuilding supply chain, where already rolled slabs must undergo further production stages. The different slabs managed in these facilities confer the problem novel practical features, such as the existence of slabs' typologies and deadlines, i.e., a maximum time beyond which their quality certifications expire and are no longer usable. In such a context, the goals of the present paper are twofold: (i) providing a comprehensive taxonomy of the main aspects involved in the problem; (ii) proposing an original mathematical formulation for the SSSP. Specifically, the model is cast as a bi-objective multi-period program, seeking to minimise the number of shuffles and expired slabs. Computational tests on randomly generated instances prove the relevance of the trade-off between the above-mentioned objectives and the impact of the yard's configuration on the retrieval process, suggesting the most suitable storage strategy to adopt under different operational settings.","PeriodicalId":51356,"journal":{"name":"International Journal of Industrial Engineering Computations","volume":"221 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72857095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Airline operational crew-aircraft planning considering revenue management: A robust optimization model under disruption","authors":"Ashkan Teymouri, H. Sahebi, M. Pishvaee","doi":"10.5267/j.ijiec.2022.12.003","DOIUrl":"https://doi.org/10.5267/j.ijiec.2022.12.003","url":null,"abstract":"Airline planning involves various issues that, in a general, can be grouped as network planning, schedule design and fleet planning, aircraft planning, and crew scheduling decisions. This study mainly aims to optimize the Crew Scheduling (CS) decisions considering the operational constraints related to Aircraft Maintenance Routing (AMR) regulations. Since, after fuel, crew costs are vital for airlines, and aircraft maintenance constraints are important operationally, the integrated Crew Scheduling and Aircraft Maintenance Routing (CS-AMR) problem is an important issue for the airlines. The present research addresses this problem using the Revenue Management (RM) approach under some disruption scenarios in the initial schedule. The proposed approach enables airlines to make more efficient decisions during disruptions to prevent flight delay/cancellation costs and recaptures an acceptable part of the spilled demand caused by disruption through the fleet stand-by capacity. This approach considers a set of disruptions in the flight schedule under different probable scenarios and provides the optimal decisions. Accordingly, airlines have two decision-making stages: Here-and-Now (HN) decisions related to the initial schedule for crew, aircraft routing and stand-by capacity to face probable disruptions and Wait-and-See (WS) decisions that determine what the executive plan of each crew and aircraft should be under each scenario, and how to use different options for flight cancellation and substitution. To this end, a novel Two-Stage Robust Scenario-based Optimization (TSRSO) model is proposed that considers the HN and WS decisions simultaneously. A numerical example is solved, and its results verify the applicability and evaluate the performance of the proposed TSRSO model. Regarding the complexity of the proposed MILP model categorized as NP-hard problems, we develop a computationally efficient solution method to solve large-scale problem instances. A single-agent local search metaheuristic algorithm, Adaptive Large Neighborhood Search (ALNS), is applied to solve the CS-AMR problem efficiently. According to the result obtained by applying the proposed revenue management approach for the CS-AMR problem, airlines can drive a robust solution under disruption scenarios that not only minimizes the total delay/cancellation costs but also increases the profit by recapturing the spilled demand.","PeriodicalId":51356,"journal":{"name":"International Journal of Industrial Engineering Computations","volume":"12 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74758424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Junchi Ma, Xifu Wang, Kai Yang, Lijun Jian, Yiwen Gao
{"title":"Optimizing inland port scale and function decisions: A bilevel programming approach","authors":"Junchi Ma, Xifu Wang, Kai Yang, Lijun Jian, Yiwen Gao","doi":"10.5267/j.ijiec.2023.5.001","DOIUrl":"https://doi.org/10.5267/j.ijiec.2023.5.001","url":null,"abstract":"With the implementation of the Belt and Road Initiative, the inland ports planning is receiving more and more attention. In this work, we aim to determine the scale and function of different potential inland ports in a certain region while considering the cargo flow allocation schemes for the inland ports and seaports in cross-border trade. Unlike previous studies, we consider the dynamic interaction between local government and manufacturing enterprises in the inland port planning process. Based on this, we formulate a bilevel programming model for the considered inland port planning problem, where the upper-level focuses on the local government and the lower-level concentrates on the manufacturing enterprise. To solve the proposed model, we develop a hybrid heuristic algorithm by combining a genetic algorithm and an exact solution method. Furthermore, we conduct a case study of the inland ports planning for the Huaihai Economic Zone in China to verify the applicability of the proposed model and algorithm. The computational results demonstrate that the proposed optimization approach can effectively increase the cross-border transportation market share of inland ports within a limited investment amount and reduce the competition among these inland ports. Our case study also provides valuable management insights on inland port planning in terms of manufacturing enterprises weights, investment limit amount, scale effect, and cargo value weights.","PeriodicalId":51356,"journal":{"name":"International Journal of Industrial Engineering Computations","volume":"1 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83494278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuan-Zhuang Li, Jia-Zhen Zou, Yang-Li Jia, Lei-Lei Meng, Wen-Qiang Zou
{"title":"An improved genetic algorithm for multi-AGV dispatching problem with unloading setup time in a matrix manufacturing workshop","authors":"Yuan-Zhuang Li, Jia-Zhen Zou, Yang-Li Jia, Lei-Lei Meng, Wen-Qiang Zou","doi":"10.5267/j.ijiec.2023.7.002","DOIUrl":"https://doi.org/10.5267/j.ijiec.2023.7.002","url":null,"abstract":"This paper investigates a novel problem concerning material delivery in a matrix manufacturing workshop, specifically the multi-automated guided vehicle (AGV) dispatching problem with unloading setup time (MAGVDUST). The objective of the problem is to minimize transportation costs, including travel costs, time penalty costs, AGV costs, and unloading setup time costs. To solve the MAGVDUST, this paper builds a mixed-integer linear programming model and proposes an improved genetic algorithm (IGA). In the IGA, an improved nearest-neighbor-based heuristic is proposed to generate a high-quality initial solution. Several advanced technologies are developed to balance local exploitation and global exploration of the algorithm, including an optimal solution preservation strategy in the selection process, two well-designed crossovers in the crossover process, and a mutation based on Partially Mapped Crossover strategy in the mutation process. In conclusion, the proposed algorithm has been thoroughly evaluated on 110 instances from an actual electronic factory and has demonstrated its superior performance compared to state-of-the-art algorithms in the existing literature.","PeriodicalId":51356,"journal":{"name":"International Journal of Industrial Engineering Computations","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135784225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Issam El Hammouti, Khaoula Derqaoui, Mohamed El Merouani
{"title":"A modified clustering search based genetic algorithm for the proactive electric vehicle routing problem","authors":"Issam El Hammouti, Khaoula Derqaoui, Mohamed El Merouani","doi":"10.5267/j.ijiec.2023.9.004","DOIUrl":"https://doi.org/10.5267/j.ijiec.2023.9.004","url":null,"abstract":"In this paper, an electric vehicle routing problem with time windows and under travel time uncertainty (U-EVRW) is addressed. The U-EVRW aims to find the optimal proactive routing plan of the electric vehicles under the travel time uncertainty during the route of the vehicles which is rarely studied in the literature. Furthermore, customer time windows, limited loading capacities and limited battery capacities constraints are also incorporated. A new mixed integer programming (MIP) model is formulated for the proposed U-EVRW. In addition to the commercial CPLEX Optimizer version 20.1.0, a modified Clustering Search based Genetic algorithm (MCSGA) is developed as a solution method. Numerical tests are conducted on the one hand to validate the effectiveness of the proposed MCSGA and on the other hand to analyze the impact of travel time uncertainty of the electric vehicle on the solutions quality.","PeriodicalId":51356,"journal":{"name":"International Journal of Industrial Engineering Computations","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135784228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Periodic blood inventory system with two supplies and two priority demand classes","authors":"Kanchala Sudtachat, Sunarin Chanta, Arjaree Saengsathien","doi":"10.5267/j.ijiec.2023.2.005","DOIUrl":"https://doi.org/10.5267/j.ijiec.2023.2.005","url":null,"abstract":"Managing blood inventory is challenging due to the perishable and unstable nature of the product needed for transfusions in healthcare facilities. In this paper, we consider a periodic review blood inventory model with two priority demand classes, namely emergency and regular patients. We propose a dynamic programming model for determining the optimal ordering policy at the hospital given the uncertainty regarding received donated blood units. The optimal policy deals with placing orders for blood units that will expire within a fixed period. The objective is to minimize total expected costs within a planning horizon while maintaining a specified expected service level. Our model considers uncertain demands and donated blood units with discrete probability following known distributions. A tabu search algorithm is developed for large-scale problems. The performance of these ordering policies is compared against the optimal fixed order quantity and the order up-to-level policies using real-life data. The numerical results show the benefit of our model over the optimal fixed order quantity and the order up-to-level policies. We measure the total expected cost and the expected service level obtained from the optimal and near-optimal policies and provide a sensitivity analysis on parameters of interest.","PeriodicalId":51356,"journal":{"name":"International Journal of Industrial Engineering Computations","volume":"39 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80252239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yarong Chen, Liuyan Zhong, C. Shena, Jabir Mumt, F. Chou
{"title":"Joint optimization of production and maintenance scheduling for unrelated parallel machine using hybrid discrete spider monkey optimization algorithm","authors":"Yarong Chen, Liuyan Zhong, C. Shena, Jabir Mumt, F. Chou","doi":"10.5267/j.ijiec.2023.4.001","DOIUrl":"https://doi.org/10.5267/j.ijiec.2023.4.001","url":null,"abstract":"This paper considers an unrelated parallel machine scheduling problem with variable maintenance based on machine reliability to minimize the maximum completion time. To obtain the optimal solution of small-scale problems, we firstly establish a mixed integer programming model. To solve the medium and large-scale problems efficiently and effectively, we develop a hybrid discrete spider monkey optimization algorithm (HDSMO), which combines discrete spider monkey optimization (DSMO) with genetic algorithm (GA). A few additional features are embedded in the HDSMO: a three-phase constructive heuristic is proposed to generate better initial solution, and an individual updating method considering the inertia weight is used to balance the exploration and exploitation capabilities. Moreover, a problem-oriented neighborhood search method is designed to improve the search efficiency. Experiments are conducted on a set of randomly generated instances. The performance of the proposed HDSMO algorithm is investigated and compared with that of other existing algorithms. The detailed results show that the proposed HDSMO algorithm can obtain significantly better solutions than the DSMO and GA algorithms.","PeriodicalId":51356,"journal":{"name":"International Journal of Industrial Engineering Computations","volume":"45 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78490918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Should offline retailers expand online under consumer showrooming based on the effects of intershowrooming and intrashowrooming?","authors":"Zhen Li, Yuqing Chen, Qingfeng Meng","doi":"10.5267/j.ijiec.2023.8.003","DOIUrl":"https://doi.org/10.5267/j.ijiec.2023.8.003","url":null,"abstract":"This study aims to find a way to alleviate or eliminate the negative impact of showrooming on brick-and-mortar retailers. Therefore, under careful consideration of the effects of intershowrooming and intrashowrooming, this study explores whether retailers can effectively solve the negative impact of showrooming by opening online channels. Conduct a comparative study on the decision-making of dual/multi-channel supply chain members before and after the retailer opens an online channel and analyze the influence. In addition, we also explored the impact of factors such as the market scale expansion effect and internet market power structure. Research has found that regardless of the market scale expansion effect generated, it is effective for the retailer to increase profits by opening an online channel. The impact of market scale expansion is not entirely beneficial to the retailer. Under the intrashowrooming, the effect of market scale expansion may benefit the manufacturer. But what is more noteworthy is that for the manufacturer, the impact of intrashowrooming is not necessarily the greater, the better, and the manufacturer's profit may decrease as this effect increases.","PeriodicalId":51356,"journal":{"name":"International Journal of Industrial Engineering Computations","volume":"206 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135784054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mixed-model assembly line balancing problem in multi-demand scenarios","authors":"Kang Wang, Qianqian Han, Zhenping Li","doi":"10.5267/j.ijiec.2023.9.002","DOIUrl":"https://doi.org/10.5267/j.ijiec.2023.9.002","url":null,"abstract":"The mixed-model assembly line balancing problem (MMALBP) in multi-demand scenarios is investigated, which addresses demand fluctuations for each product in each scenario. The objective is to minimize the sum of costs associated with tasks allocation, workstation activation, and penalty costs for unbalanced workloads. A mixed integer programming model is developed to consider the constraint of workstation space capacity. A phased heuristic algorithm is designed to solve the problem. The computational results show that considering demand fluctuations in multiple demand scenarios leads to more balanced workstation loads and improved assembly line production efficiency. Finally, sensitivity analysis of important parameters is conducted to summarize the impact of parameter changes on the results and provide practical management insights.","PeriodicalId":51356,"journal":{"name":"International Journal of Industrial Engineering Computations","volume":"42 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135784057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Julio Cesar Londoño, Juan Jose Bravo Bastidas, Pablo Miranda González, John Willmer Escobar
{"title":"Inventory routing problem with backhaul considering returnable transport items collection","authors":"Julio Cesar Londoño, Juan Jose Bravo Bastidas, Pablo Miranda González, John Willmer Escobar","doi":"10.5267/j.ijiec.2023.6.001","DOIUrl":"https://doi.org/10.5267/j.ijiec.2023.6.001","url":null,"abstract":"The Inventory Routing Problem (IRP) has been highlighted as a valuable strategy for tackling routing and inventory problems. This paper addresses the IRP but considers the forward delivery and the use of Returnable Transport Items (RTIs) in the distribution strategy. We develop an optimization model by considering inventory routing decisions with RTIs collection (backhaul customers) of a Closed-Loop Supply Chain (CLSC) within a short-term planning horizon. RTIs consider reusable packing materials such as trays, pallets, recyclable boxes, or crates. The RTIs represent an essential asset for many industries worldwide. The solution of the model allows concluding that if RTIs are considered for the distribution process, the relationship between the inventory handling costs of both the final goods and RTIs highly determines the overall performance of the logistics system under study. The obtained results show the efficiency of the proposed optimization scheme for solving the combined IRP with RTIs, which could be applied to different real industrial cases.","PeriodicalId":51356,"journal":{"name":"International Journal of Industrial Engineering Computations","volume":"68 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135784221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}