基于改进聚类搜索的遗传算法求解电动汽车的主动路径问题

IF 1.6 3区 工程技术 Q4 ENGINEERING, INDUSTRIAL
Issam El Hammouti, Khaoula Derqaoui, Mohamed El Merouani
{"title":"基于改进聚类搜索的遗传算法求解电动汽车的主动路径问题","authors":"Issam El Hammouti, Khaoula Derqaoui, Mohamed El Merouani","doi":"10.5267/j.ijiec.2023.9.004","DOIUrl":null,"url":null,"abstract":"In this paper, an electric vehicle routing problem with time windows and under travel time uncertainty (U-EVRW) is addressed. The U-EVRW aims to find the optimal proactive routing plan of the electric vehicles under the travel time uncertainty during the route of the vehicles which is rarely studied in the literature. Furthermore, customer time windows, limited loading capacities and limited battery capacities constraints are also incorporated. A new mixed integer programming (MIP) model is formulated for the proposed U-EVRW. In addition to the commercial CPLEX Optimizer version 20.1.0, a modified Clustering Search based Genetic algorithm (MCSGA) is developed as a solution method. Numerical tests are conducted on the one hand to validate the effectiveness of the proposed MCSGA and on the other hand to analyze the impact of travel time uncertainty of the electric vehicle on the solutions quality.","PeriodicalId":51356,"journal":{"name":"International Journal of Industrial Engineering Computations","volume":"6 1","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A modified clustering search based genetic algorithm for the proactive electric vehicle routing problem\",\"authors\":\"Issam El Hammouti, Khaoula Derqaoui, Mohamed El Merouani\",\"doi\":\"10.5267/j.ijiec.2023.9.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an electric vehicle routing problem with time windows and under travel time uncertainty (U-EVRW) is addressed. The U-EVRW aims to find the optimal proactive routing plan of the electric vehicles under the travel time uncertainty during the route of the vehicles which is rarely studied in the literature. Furthermore, customer time windows, limited loading capacities and limited battery capacities constraints are also incorporated. A new mixed integer programming (MIP) model is formulated for the proposed U-EVRW. In addition to the commercial CPLEX Optimizer version 20.1.0, a modified Clustering Search based Genetic algorithm (MCSGA) is developed as a solution method. Numerical tests are conducted on the one hand to validate the effectiveness of the proposed MCSGA and on the other hand to analyze the impact of travel time uncertainty of the electric vehicle on the solutions quality.\",\"PeriodicalId\":51356,\"journal\":{\"name\":\"International Journal of Industrial Engineering Computations\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Industrial Engineering Computations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5267/j.ijiec.2023.9.004\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Industrial Engineering Computations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5267/j.ijiec.2023.9.004","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 1

摘要

研究了带时间窗且行程时间不确定的电动汽车路径问题。U-EVRW旨在寻找电动汽车在行驶时间不确定的情况下的最优主动路径方案,这在文献中很少有研究。此外,还考虑了客户时间窗口、有限负载能力和有限电池容量的限制。针对所提出的U-EVRW,建立了一个新的混合整数规划(MIP)模型。在商用CPLEX优化器20.1.0版本的基础上,开发了一种改进的基于聚类搜索的遗传算法(MCSGA)作为求解方法。数值试验一方面验证了所提MCSGA的有效性,另一方面分析了电动汽车行驶时间不确定性对解质量的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A modified clustering search based genetic algorithm for the proactive electric vehicle routing problem
In this paper, an electric vehicle routing problem with time windows and under travel time uncertainty (U-EVRW) is addressed. The U-EVRW aims to find the optimal proactive routing plan of the electric vehicles under the travel time uncertainty during the route of the vehicles which is rarely studied in the literature. Furthermore, customer time windows, limited loading capacities and limited battery capacities constraints are also incorporated. A new mixed integer programming (MIP) model is formulated for the proposed U-EVRW. In addition to the commercial CPLEX Optimizer version 20.1.0, a modified Clustering Search based Genetic algorithm (MCSGA) is developed as a solution method. Numerical tests are conducted on the one hand to validate the effectiveness of the proposed MCSGA and on the other hand to analyze the impact of travel time uncertainty of the electric vehicle on the solutions quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.70
自引率
9.10%
发文量
35
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信