Journal of Micro- and Nano-Manufacturing最新文献

筛选
英文 中文
A High Energy Density Pulsed Power Supply for Micro EDM of High Aspect Ratio Holes 用于高纵横比孔微型放电加工的高能量密度脉冲电源
Journal of Micro- and Nano-Manufacturing Pub Date : 2024-04-17 DOI: 10.1115/1.4065328
Peiyao Cao, H. Tong, Yong Li, Yulan Zhu
{"title":"A High Energy Density Pulsed Power Supply for Micro EDM of High Aspect Ratio Holes","authors":"Peiyao Cao, H. Tong, Yong Li, Yulan Zhu","doi":"10.1115/1.4065328","DOIUrl":"https://doi.org/10.1115/1.4065328","url":null,"abstract":"\u0000 In micro EDM (Electrical Discharge Machining), it is difficult to guarantee machining efficiency and accuracy when further increasing the aspect ratio of micro-holes due to poor circulation of working fluid and removal of debris. In order to increase the ratio of material vaporization erosion and reduce the ejection of large debris caused by material melting, this study proposes a high energy density pulsed power supply that increases the peak discharge current by adding energy-storage inductors with designed charging and discharging control. Machining micro holes of diameters from 100 µm to 200 µm with aspect ratios of 10:1, 20:1, and 30:1 show that when the inductance increases from 4.7 µH to 20 µH, the peak current increases by more than two times and the machining efficiency improves by approximately 30%, and the accuracy of the aperture consistency is enhanced, while the occurrence of micro-cracks on the machined surface is significantly reduced.","PeriodicalId":513355,"journal":{"name":"Journal of Micro- and Nano-Manufacturing","volume":" 26","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140691856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Micro-Channel Cutting On Glass in ECDM Process Using Different Electrolytes and Tool Polarity 使用不同电解质和工具极性在 ECDM 工艺中切割玻璃上的微通道
Journal of Micro- and Nano-Manufacturing Pub Date : 2024-04-17 DOI: 10.1115/1.4065326
Md. Niamot Ali, B. Sarkar, B. Doloi, B. Bhattacharyya
{"title":"Micro-Channel Cutting On Glass in ECDM Process Using Different Electrolytes and Tool Polarity","authors":"Md. Niamot Ali, B. Sarkar, B. Doloi, B. Bhattacharyya","doi":"10.1115/1.4065326","DOIUrl":"https://doi.org/10.1115/1.4065326","url":null,"abstract":"\u0000 Micro-channel cutting on electrically non-conducting materials with electrochemical discharge machining (ECDM) process has drawn an momentous attention in manufacturing field as compared to other existing non-traditional machining processes. In the present research work, an effort has been accomplished to investigate the effects of process parameters namely applied voltage (V), electrolyte concentration (wt%), pulse frequency and duty ratio on different performance features of ECDM viz material removal rate (MRR), overcut (OC) and heat affected zone (HAZ) area during micro-channel cutting on glass. Also, the comparative performance studies during micro-channel cutting have been done by using mixed electrolyte of NaOH & KOH and different tool polarities. Overcut is measured as lower (42.26 µm) when aqueous KOH electrolyte is used and as higher (133.44 µm) for aqueous NaOH electrolyte. HAZ enlarges with enrichment in concentration for both types of electrolyte. It is observed that polarity has a vital role on various machining characteristics. As compared to direct polarity, MRR is found very low (3.2 mg/hr) in reverse polarity of tool. Overcut is found low in KOH electrolyte for both types of tool polarity (i.e. 64.68 µm for direct polarity and 42.27 µm for reverse polarity). The process parameters influence on the surface texture of micro-channels. Micro-crack is noticed for direct polarity of tool.","PeriodicalId":513355,"journal":{"name":"Journal of Micro- and Nano-Manufacturing","volume":"50 s176","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140693810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical Modeling, Experimental Investigation and Optimization of a Micro Hot Embossing Process 微型热压纹工艺的数值建模、实验研究与优化
Journal of Micro- and Nano-Manufacturing Pub Date : 2024-04-17 DOI: 10.1115/1.4065327
Partha Protim Mondal, Placid Ferreira, S. Kapoor, Patrick Bless
{"title":"Numerical Modeling, Experimental Investigation and Optimization of a Micro Hot Embossing Process","authors":"Partha Protim Mondal, Placid Ferreira, S. Kapoor, Patrick Bless","doi":"10.1115/1.4065327","DOIUrl":"https://doi.org/10.1115/1.4065327","url":null,"abstract":"\u0000 This paper describes the development of a finite element simulation model and a self-made low-cost experimental setup for the micro hot embossing process. The simulation model incorporates stress relaxation behavior through the utilization of the generalized Maxwell model. It also considers thermal expansion and contact friction effects, enabling accurate prediction of the deformed pattern of PMMA. Simulations and experiments were performed for various pressure and temperature combinations, and the resulting pattern profile depths were found to be in good agreement, between the simulation and experimental results. In addition, the simulation model was used to generate response surfaces through face centered central composite design (CCD) to identify the ideal combination of process parameters of the micro hot embossing process for creating a patterned SMD (Surface Mount Device) LED chip panel.","PeriodicalId":513355,"journal":{"name":"Journal of Micro- and Nano-Manufacturing","volume":" 36","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140691334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Dissolvable Alginate Fiber Network Produced via the Immersed Microfluidic Spinning 通过浸入式微流体纺丝技术生成的可溶解藻酸盐纤维网
Journal of Micro- and Nano-Manufacturing Pub Date : 2024-04-17 DOI: 10.1115/1.4065331
Zarya Rajestari, Joseph Kalaus, L. Kulinsky
{"title":"The Dissolvable Alginate Fiber Network Produced via the Immersed Microfluidic Spinning","authors":"Zarya Rajestari, Joseph Kalaus, L. Kulinsky","doi":"10.1115/1.4065331","DOIUrl":"https://doi.org/10.1115/1.4065331","url":null,"abstract":"\u0000 Pore size and pore interconnectivity that characterize the topology of the vascular networks in tissue constructs are critical to healthy cell behavior and tissue formation. While scaffolds with hollow channel structures have gained significant attention, still creating the hollow channel networks within various cellular matrices such as cell-laden hydrogels, remain a slow process limited by the speed of material extrusion of 3D printing techniques for the deposition of sacrificial fibers. To address the issue of low throughput for sacrificial fiber production and placement, we propose to utilize the micromanufacturing technique of the immersed microfluidic spinning. Present study discusses the optimization of the topology of the sacrificial calcium alginate microfibers as a function of alginate concentration and the gauge of the needle used in the immersed fluidic spinning. An important parameter of the fabricated fiber network is the size of the loops produced via this method. We demonstrate that the loops with radii between approximately 1,600 and 3,200 microns can be produced with needle of 30 gauge for alginate concentrations between 1% and 8%. Fiber diameters are also characterized as a function of needle gauge and alginate concentration. Finally, viability of the fibroblast cells in GelMA are qualitatively studied as a function of the distance of the cells from the outside boundary of the gel (where the cell media is located). As expected, the cell viability falls as the distance from the outer boundary of the gel increases.","PeriodicalId":513355,"journal":{"name":"Journal of Micro- and Nano-Manufacturing","volume":" 20","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140691642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Controlling Surface of Rods with Entrained Particle as Asperities 以夹带颗粒为穿透物控制棒的表面
Journal of Micro- and Nano-Manufacturing Pub Date : 2024-02-03 DOI: 10.1115/1.4064646
MD Khalil, Md. Akibul Islam, Dezhong Tong, M. Jawed, Bashir Khoda
{"title":"Controlling Surface of Rods with Entrained Particle as Asperities","authors":"MD Khalil, Md. Akibul Islam, Dezhong Tong, M. Jawed, Bashir Khoda","doi":"10.1115/1.4064646","DOIUrl":"https://doi.org/10.1115/1.4064646","url":null,"abstract":"\u0000 Changing the surface properties (i.e., roughness or friction) can be instrumental for many applications but can be a complex and resources intensive process. In this paper, we demonstrate a novel process of controlling the friction of a continuous rod by delivering inorganic micro-particles. A standardized continuous particle transfer protocol has been developed in our laboratory for depositing particles from a liquid carrier system to the cylindrical rod substrate. The particle transfer process can produce controllable and tunable surface properties. Polymeric binder is used to deliver the particles as asperities over the rod substrate and by controlling their size, shape and distribution, the coefficient of friction of the rod is determined. Tabletop experiments are designed and performed to measure the friction coefficient following the Capstan equation. The entrained particles on the substrate will create a size and shape-based asperities which will alter the surface morphology toward desired direction. Both oblique and direct quantitative measurements are performed at different particles and binder concentrations. A systematic variation in the friction coefficient is observed and reported in the result section. It is observed from the capstan experiment that adding only 1% irregular shaped particles in the suspension changes the friction coefficient of the rods by almost 115%. The proposed friction control technique is a simple to scale up, low-cost, low-waste, and low energy manufacturing method for controlling the surface morphology.","PeriodicalId":513355,"journal":{"name":"Journal of Micro- and Nano-Manufacturing","volume":"43 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139867431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信