Partha Protim Mondal, Placid Ferreira, S. Kapoor, Patrick Bless
{"title":"微型热压纹工艺的数值建模、实验研究与优化","authors":"Partha Protim Mondal, Placid Ferreira, S. Kapoor, Patrick Bless","doi":"10.1115/1.4065327","DOIUrl":null,"url":null,"abstract":"\n This paper describes the development of a finite element simulation model and a self-made low-cost experimental setup for the micro hot embossing process. The simulation model incorporates stress relaxation behavior through the utilization of the generalized Maxwell model. It also considers thermal expansion and contact friction effects, enabling accurate prediction of the deformed pattern of PMMA. Simulations and experiments were performed for various pressure and temperature combinations, and the resulting pattern profile depths were found to be in good agreement, between the simulation and experimental results. In addition, the simulation model was used to generate response surfaces through face centered central composite design (CCD) to identify the ideal combination of process parameters of the micro hot embossing process for creating a patterned SMD (Surface Mount Device) LED chip panel.","PeriodicalId":513355,"journal":{"name":"Journal of Micro- and Nano-Manufacturing","volume":" 36","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Modeling, Experimental Investigation and Optimization of a Micro Hot Embossing Process\",\"authors\":\"Partha Protim Mondal, Placid Ferreira, S. Kapoor, Patrick Bless\",\"doi\":\"10.1115/1.4065327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper describes the development of a finite element simulation model and a self-made low-cost experimental setup for the micro hot embossing process. The simulation model incorporates stress relaxation behavior through the utilization of the generalized Maxwell model. It also considers thermal expansion and contact friction effects, enabling accurate prediction of the deformed pattern of PMMA. Simulations and experiments were performed for various pressure and temperature combinations, and the resulting pattern profile depths were found to be in good agreement, between the simulation and experimental results. In addition, the simulation model was used to generate response surfaces through face centered central composite design (CCD) to identify the ideal combination of process parameters of the micro hot embossing process for creating a patterned SMD (Surface Mount Device) LED chip panel.\",\"PeriodicalId\":513355,\"journal\":{\"name\":\"Journal of Micro- and Nano-Manufacturing\",\"volume\":\" 36\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Micro- and Nano-Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4065327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micro- and Nano-Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4065327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Numerical Modeling, Experimental Investigation and Optimization of a Micro Hot Embossing Process
This paper describes the development of a finite element simulation model and a self-made low-cost experimental setup for the micro hot embossing process. The simulation model incorporates stress relaxation behavior through the utilization of the generalized Maxwell model. It also considers thermal expansion and contact friction effects, enabling accurate prediction of the deformed pattern of PMMA. Simulations and experiments were performed for various pressure and temperature combinations, and the resulting pattern profile depths were found to be in good agreement, between the simulation and experimental results. In addition, the simulation model was used to generate response surfaces through face centered central composite design (CCD) to identify the ideal combination of process parameters of the micro hot embossing process for creating a patterned SMD (Surface Mount Device) LED chip panel.